作者: M. S. Rosin , H. Sun
DOI: 10.1103/PHYSREVE.87.043114
关键词: Kinetic energy 、 Eulerian path 、 Torque 、 Hamiltonian (quantum mechanics) 、 Boundary value problem 、 Mathematics 、 Parameter space 、 Nonlinear system 、 Diode 、 Mathematical analysis 、 Classical mechanics
摘要: We present an analysis of the stability, energy, and torque properties a model Bursian diode in one dimensional Eulerian framework using cold Euler-Poisson fluid equations. In regions parameter space where there are two sets equilibrium solutions for same boundary conditions, solution is found to be stable other unstable linear perturbations. Following linearly into nonlinear regime, we find they relax equilibrium. A description this process terms kinetic, potential boundary-flux energies given, relation Hamiltonian formulation commented on. nonlocal integral theorem relating prescribed data average current domain also provided. The results will useful numerical verification purposes, understanding diodes general.