Chaos and quantum thermalization

作者: Mark Srednicki

DOI: 10.1103/PHYSREVE.50.888

关键词: PhysicsQuantum systemAntisymmetric relationQuantum statistical mechanicsThermal equilibriumMomentumEnergy (signal processing)Quantum mechanicsEigenfunctionEigenstate thermalization hypothesis

摘要: We show that a bounded, isolated quantum system of many particles in a specific initial state will approach thermal equilibrium if the energy eigenfunctions which are superposed to …

参考文章(24)
Louis de Broglie, W. E. Jones, R. Jancel, D. ter Haar, Foundations of classical and quantum statistical mechanics ,(1969)
Martin C. Gutzwiller, Jorge V. José, Chaos in classical and quantum mechanics ,(1990)
Georgy A. Martynov, Chaos in Dynamic Systems ,(1985)
Yakov G Sinai, Dynamical systems with elastic reflections Russian Mathematical Surveys. ,vol. 25, pp. 137- 189 ,(1970) , 10.1070/RM1970V025N02ABEH003794
Martin C. Gutzwiller, Chaos in Classical and Quantum Mechanics Interdisciplinary Applied Mathematics. ,(1990) , 10.1007/978-1-4612-0983-6
Y. Colin de Verdiere, Ergodicit� et fonctions propres du laplacien Communications in Mathematical Physics. ,vol. 102, pp. 497- 502 ,(1985) , 10.1007/BF01209296
Steven Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces Duke Mathematical Journal. ,vol. 55, pp. 919- 941 ,(1987) , 10.1215/S0012-7094-87-05546-3