Nitrogen-terminated silicon nanoparticles obtained via chemical etching and passivation are specific fluorescent probes for creatinine.

作者: Lei Meng , Chengwu Lan , Zhonghu Liu , Jian-Hang Yin , Na Xu

DOI: 10.1007/S00604-019-3494-6

关键词: NanochemistrySiliconPassivationHydrofluoric acidAnalytical chemistryEtching (microfabrication)Quantum yieldFluorescenceIsotropic etchingMaterials science

摘要: A method is described here to prepare water-dispersible nitrogen-functionalized silicon nanoparticles (N-SiNPs). It consists of two steps, viz. etching the oxidized shell SiNPs and nitrogen-passivation exposed silicon. The resulting N-SiNPs have an average diameter 2.6±0.7 nm show blue fluorescence (with excitation/emission peaks at 340/420 nm). quantum yield 23% decay time in nanosecond regime. Compared methods using a plasma or hydrofluoric acid, process (etching passivation) mild, continuous, fast, air-compatible. modified with chlorotetracycline are shown be viable fluorescent probe for creatinine. Fluorescence drops 0 20 μM creatinine concentration range, limit detection 0.14 μM.

参考文章(35)
Stein Hallan, Arne Åsberg, Morten Lindberg, Harald Johnsen, Validation of the modification of diet in renal disease formula for estimating GFR with special emphasis on calibration of the serum creatinine assay American Journal of Kidney Diseases. ,vol. 44, pp. 84- 93 ,(2004) , 10.1053/J.AJKD.2004.03.027
Jianxing Zhao, Hong Chen, Peihua Ni, Bingxin Xu, Xuemei Luo, Yiming Zhan, Pingjin Gao, Dingliang Zhu, Simultaneous determination of urinary tryptophan, tryptophan-related metabolites and creatinine by high performance liquid chromatography with ultraviolet and fluorimetric detection Journal of Chromatography B. ,vol. 879, pp. 2720- 2725 ,(2011) , 10.1016/J.JCHROMB.2011.07.035
John C. Pickup, Faeiza Hussain, Nicholas D. Evans, Olaf J. Rolinski, David J.S. Birch, Fluorescence-based glucose sensors Biosensors and Bioelectronics. ,vol. 20, pp. 2555- 2565 ,(2005) , 10.1016/J.BIOS.2004.10.002
A. R. Stegner, R. N. Pereira, R. Lechner, K. Klein, H. Wiggers, M. Stutzmann, M. S. Brandt, Doping efficiency in freestanding silicon nanocrystals from the gas phase: Phosphorus incorporation and defect-induced compensation Physical Review B. ,vol. 80, pp. 165326- ,(2009) , 10.1103/PHYSREVB.80.165326
Melanie L. Mastronardi, Florian Maier-Flaig, Daniel Faulkner, Eric J. Henderson, Christian Kübel, Uli Lemmer, Geoffrey A. Ozin, Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals. Nano Letters. ,vol. 12, pp. 337- 342 ,(2012) , 10.1021/NL2036194
Daniel C. Hannah, Jihua Yang, Paul Podsiadlo, Maria K.Y. Chan, Arnaud Demortière, David J. Gosztola, Vitali B. Prakapenka, George C. Schatz, Uwe Kortshagen, Richard D. Schaller, On the Origin of Photoluminescence in Silicon Nanocrystals: Pressure-Dependent Structural and Optical Studies Nano Letters. ,vol. 12, pp. 4200- 4205 ,(2012) , 10.1021/NL301787G
R W Liptak, B Devetter, J H Thomas III, U Kortshagen, S A Campbell, SF6plasma etching of silicon nanocrystals Nanotechnology. ,vol. 20, pp. 035603- 035603 ,(2009) , 10.1088/0957-4484/20/3/035603
W. D. A. M. de Boer, D. Timmerman, K. Dohnalová, I. N. Yassievich, H. Zhang, W. J. Buma, T. Gregorkiewicz, Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals Nature Nanotechnology. ,vol. 5, pp. 878- 884 ,(2010) , 10.1038/NNANO.2010.236
L. T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers Applied Physics Letters. ,vol. 57, pp. 1046- 1048 ,(1990) , 10.1063/1.103561
Keisuke Sato, Hiroaki Tsuji, Kenji Hirakuri, Naoki Fukata, Yusuke Yamauchi, Controlled chemical etching for silicon nanocrystals with wavelength-tunable photoluminescence Chemical Communications. pp. 3759- 3761 ,(2009) , 10.1039/B903313K