Cordial Volterra Integral Equations 2

作者: Gennadi Vainikko

DOI: 10.1080/01630561003666234

关键词: Volterra integral equationSpectrum (functional analysis)Operator (computer programming)MathematicsMathematical analysisCollocationSpace (mathematics)Polynomial

摘要: We study the mapping properties and spectra of (cordial) Volterra integral operators form , 0 ≤ t ≤ T, where ϕ ∊L 1(0, 1), a ∊ C m (0 ≤ s ≤ t ≤ T), m ≥ 0. Also polynomial collocation methods for solving equation μu = V ϕ, a u + f is examined. Here μ real or complex parameter outside spectrum V as an operator in space C[0, T].

参考文章(12)
Ivan P. Gavrilyuk, Collocation methods for Volterra integral and related functional equations. Mathematics of Computation. ,vol. 75, ,(2006)
Johannes Elschner, On Spline Approximation for a Class of Non-Compact Integral Equations Mathematische Nachrichten. ,vol. 146, pp. 271- 321 ,(1990) , 10.1002/MANA.19901461703
Hermann Brunner, Arvet Pedas, Gennadi Vainikko, The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations Mathematics of Computation. ,vol. 68, pp. 1079- 1095 ,(1999) , 10.1090/S0025-5718-99-01073-X
H. Brunner, P. J. van der Houwen, The numerical solution of Volterra equations CWI Monographs. ,(1986)
Gennadi Vainikko, Spline Collocation for Cordial Volterra Integral Equations Numerical Functional Analysis and Optimization. ,vol. 31, pp. 313- 338 ,(2010) , 10.1080/01630561003757710
Raul Kangro, Peeter Oja, Convergence of spline collocation for Volterra integral equations Applied Numerical Mathematics. ,vol. 58, pp. 1434- 1447 ,(2008) , 10.1016/J.APNUM.2007.08.004
Bernd Silbermann, Siegfried Prössdorf, Numerical Analysis for Integral and Related Operator Equations ,(1991)