Performance and analysis of a novel polymer electrolyte membrane fuel cell using a solution based redox mediator

作者: R. Singh , A.A. Shah , A. Potter , B. Clarkson , A. Creeth

DOI: 10.1016/J.JPOWSOUR.2011.10.078

关键词: MembraneProton exchange membrane fuel cellNanotechnologyElectrolyteChemical engineeringMaterials scienceAnodePolyoxometalateRedoxMembrane electrode assemblyCathode

摘要: The cost and availability of platinum, together with degradation phenomena that are directly or indirectly caused by the use a precious-metal catalyst, major obstacles to commercialization incumbent polymer electrolyte membrane fuel cell (PEMFC) technologies. Flowcath® technology is highly promising alternative conventional PEMFC avoids many these issues. While anode resembles cell, novel cathode employs liquid-based polyoxometalate redox mediator entirely free any precious metals. A transition-metal based centre within undergoes reversible reduction in regenerated externally using air. In this paper, performance for different catholyte flow rates concentrations described first model developed validated. voltage losses quantified compared values employing standard electrode assembly.

参考文章(14)
Chunxiang Li, Yan Zhang, Kevin P. O’Halloran, Jiawei Zhang, Huiyuan Ma, Electrochemical behavior of vanadium-substituted Keggin-type polyoxometalates in aqueous solution Journal of Applied Electrochemistry. ,vol. 39, pp. 421- 427 ,(2009) , 10.1007/S10800-008-9687-Z
Shengsheng Zhang, Xiaozi Yuan, Haijiang Wang, Walter Mérida, Hong Zhu, Jun Shen, Shaohong Wu, Jiujun Zhang, None, A review of accelerated stress tests of MEA durability in PEM fuel cells International Journal of Hydrogen Energy. ,vol. 34, pp. 388- 404 ,(2009) , 10.1016/J.IJHYDENE.2008.10.012
Dawn M. Bernardi, Mark W. Verbrugge, Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte AIChE Journal. ,vol. 37, pp. 1151- 1163 ,(1991) , 10.1002/AIC.690370805
Constantinos V Chrysikopoulos, Pin-Yi Hsuan, Marios M Fyrillas, Kenneth Y Lee, Mass transfer coefficient and concentration boundary layer thickness for a dissolving NAPL pool in porous media Journal of Hazardous Materials. ,vol. 97, pp. 245- 255 ,(2003) , 10.1016/S0304-3894(02)00264-9
R. Mills, Self-diffusion in normal and heavy water in the range 1-45.deg. The Journal of Physical Chemistry. ,vol. 77, pp. 685- 688 ,(1973) , 10.1021/J100624A025
Jungkwon Choi, Noboru Hirota, Masahide Terazima, A pH-Jump Reaction Studied by the Transient Grating Method: Photodissociation of o-Nitrobenzaldehyde Journal of Physical Chemistry A. ,vol. 105, pp. 12- 18 ,(2001) , 10.1021/JP0014162
T. E. Springer, T. A. Zawodzinski, S. Gottesfeld, Polymer Electrolyte Fuel Cell Model Journal of The Electrochemical Society. ,vol. 138, pp. 2334- 2342 ,(1991) , 10.1149/1.2085971
Hubert A. Gasteiger, Shyam S. Kocha, Bhaskar Sompalli, Frederick T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs Applied Catalysis B-environmental. ,vol. 56, pp. 9- 35 ,(2005) , 10.1016/J.APCATB.2004.06.021
V.F Odyakov, E.G Zhizhina, K.I Matveev, Redox potentials of molybdovanadophosphoric heteropoly acids in aqueous solutions Journal of Molecular Catalysis A: Chemical. ,vol. 158, pp. 453- 456 ,(2000) , 10.1016/S1381-1169(00)00123-0
Jianlu Zhang, Yanghua Tang, Chaojie Song, Jiujun Zhang, Haijiang Wang, PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 °C to 120 °C Journal of Power Sources. ,vol. 163, pp. 532- 537 ,(2006) , 10.1016/J.JPOWSOUR.2006.09.026