Derivation and efficient implementation of the fast multipole method

作者: Christopher A. White , Martin Head‐Gordon

DOI: 10.1063/1.468354

关键词: Applied mathematicsMultipole expansionTruncationSpherical multipole momentsAxial multipole momentsDistributed multipole analysisFast multipole methodPhysicsTaylor seriesCylindrical multipole momentsClassical mechanics

摘要: The fast multipole method (FMM) of Greengard evaluates Coulomb interactions point charges with computational requirements that increase linearly the number particles. In this work, central transformations FMM are obtained in a very compact manner from simple algebraic manipulations two addition theorems. intermediate and Taylor expansions defined differently previous work to yield simplified more efficient transformations. Error estimates due effect truncation use transformation operator. Efficient implementation for potential forces is discussed, calculations presented probe accuracy performance method.

参考文章(27)
Jiro Shimada, Hiroki Kaneko, Toshikazu Takada, Performance of fast multipole methods for calculating electrostatic interactions in biomacromolecular simulations Journal of Computational Chemistry. ,vol. 15, pp. 28- 43 ,(1994) , 10.1002/JCC.540150105
W.B. Streett, D.J. Tildesley, G. Saville, Multiple time-step methods in molecular dynamics Molecular Physics. ,vol. 35, pp. 639- 648 ,(1978) , 10.1080/00268977800100471
B. C. Carlson, G. S. Rushbrooke, On the expansion of a Coulomb potential in spherical harmonics Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 46, pp. 626- 633 ,(1950) , 10.1017/S0305004100026190
Saul A. Teukolsky, Brian P. Flannery, William T. Vetterling, William H. Press, Numerical Recipes in C: The Art of Scientific Computing ,(1986)
John David Jackson, Royce KP Zia, Classical Electrodynamics ,(1962)
J. W. Eastwood, R. W. Hockney, Computer Simulation Using Particles Computer Simulation Using Particles. ,(1981)
Robert Sedgewick, Algorithms in C ,(1990)
K. E. Schmidt, Michael A. Lee, Implementing the fast multipole method in three dimensions Journal of Statistical Physics. ,vol. 63, pp. 1223- 1235 ,(1991) , 10.1007/BF01030008
V Rokhlin, Rapid solution of integral equations of classical potential theory Journal of Computational Physics. ,vol. 60, pp. 187- 207 ,(1985) , 10.1016/0021-9991(85)90002-6