Measurement structures and linear inequalities

作者: Dana Scott

DOI: 10.1016/0022-2496(64)90002-1

关键词: Mathematical analysisLinear inequalityStructure (category theory)Measurement theoryFinite systemFunction (mathematics)MathematicsComparative probabilityApplied mathematics

摘要: Abstract The general mathematical criterion for the solvability of finite systems linear inequalities is applied to some specific situations from measurement theory. Three examples are treated in detail, and each case necessary sufficent conditions existence a suitable real-valued (utility) function on structure obtained.

参考文章(7)
Dana Scott, Patrick Suppes, Foundational aspects of theories of measurement Journal of Symbolic Logic. ,vol. 23, pp. 113- 128 ,(1958) , 10.2307/2964389
Charles H. Kraft, John W. Pratt, A. Seidenberg, Intuitive Probability on Finite Sets Annals of Mathematical Statistics. ,vol. 30, pp. 408- 419 ,(1959) , 10.1214/AOMS/1177706260
Robert L. Causey, Basic measurement theory Journal of Symbolic Logic. ,vol. 36, pp. 322- 323 ,(1971) , 10.2307/2270274
J. L. Kelley, Measures on Boolean algebras Pacific Journal of Mathematics. ,vol. 9, pp. 1165- 1177 ,(1959) , 10.2140/PJM.1959.9.1165
R.Duncan Luce, John W. Tukey, Simultaneous conjoint measurement: A new type of fundamental measurement Journal of Mathematical Psychology. ,vol. 1, pp. 1- 27 ,(1964) , 10.1016/0022-2496(64)90015-X
Ernest Adams, Robert Fagot, A model of riskless choice Systems Research and Behavioral Science. ,vol. 4, pp. 1- 10 ,(2007) , 10.1002/BS.3830040102
R. Duncan Luce, Semiorders and a Theory of Utility Discrimination Econometrica. ,vol. 24, pp. 178- ,(1956) , 10.2307/1905751