Concentration of the information in data with log-concave distributions

作者: Mokshay Madiman , Sergey G. Bobkov

DOI: 10.1214/10-AOP592

关键词: Entropy (information theory)CombinatoricsMathematicsAsymptotic equipartition property

摘要: on which the distribution of Xis supported. In this case, eh(X) is essentially number bits neededto represent X by a coding scheme that minimizes average code length([Sha48]). continuous case (with reference measure dx), one may stillcall information content even though interpretation nolonger holds. statistics, think as thelog likelihood function.The value known more com-monly entropy. Indeed, entropy defined byh(X) = −Zf(x)logf(x)dx= −Elogf(X).

参考文章(18)
Leo Breiman, The Individual Ergodic Theorem of Information Theory Annals of Mathematical Statistics. ,vol. 28, pp. 809- 811 ,(1957) , 10.1214/AOMS/1177706899
Samuel Karlin, Frank Proschan, Richard Barlow, Moment inequalities of Pólya frequency functions. Pacific Journal of Mathematics. ,vol. 11, pp. 1023- 1033 ,(1961) , 10.2140/PJM.1961.11.1023
Brockway McMillan, The Basic Theorems of Information Theory Annals of Mathematical Statistics. ,vol. 24, pp. 196- 219 ,(1953) , 10.1214/AOMS/1177729028
John Kieffer, A SIMPLE PROOF OF THE MOY-PEREZ GENERALIZATION OF THE SHANNON-MCMILLAN THEOREM Pacific Journal of Mathematics. ,vol. 51, pp. 203- 206 ,(1974) , 10.2140/PJM.1974.51.203
CE Shennon, Warren Weaver, A mathematical theory of communication Bell System Technical Journal. ,vol. 27, pp. 379- 423 ,(1948) , 10.1002/J.1538-7305.1948.TB01338.X
Richard E. Barlow, Albert W. Marshall, Frank Proschan, Properties of Probability Distributions with Monotone Hazard Rate Annals of Mathematical Statistics. ,vol. 34, pp. 375- 389 ,(1963) , 10.1214/AOMS/1177704147
B. Klartag, V. D. Milman, Geometry of Log-concave Functions and Measures Geometriae Dedicata. ,vol. 112, pp. 169- 182 ,(2005) , 10.1007/S10711-004-2462-3
Paul H. Algoet, Thomas M. Cover, A sandwich proof of the Shannon-McMillan-Breiman theorem Annals of Probability. ,vol. 16, pp. 899- 909 ,(1988) , 10.1214/AOP/1176991794
S. Bobkov, Extremal properties of half-spaces for log-concave distributions Annals of Probability. ,vol. 24, pp. 35- 48 ,(1996) , 10.1214/AOP/1042644706
Shu-Teh Chen Moy, Generalizations of Shannon-McMillan theorem Pacific Journal of Mathematics. ,vol. 11, pp. 705- 714 ,(1961) , 10.2140/PJM.1961.11.705