Regularized quantile regression under heterogeneous sparsity with application to quantitative genetic traits

作者: Qianchuan He , Linglong Kong , Yanhua Wang , Sijian Wang , Timothy A. Chan

DOI: 10.1016/J.CSDA.2015.10.007

关键词: Quantile regressionQuantileRegressionProperty (programming)Feature selectionGenetic heterogeneityVariable (computer science)Quantitative trait locusPattern recognitionArtificial intelligenceMathematicsMachine learning

摘要: Genetic studies often involve quantitative traits. Identifying genetic features that influence traits can help to uncover the etiology of diseases. Quantile regression method considers conditional quantiles response variable, and is able characterize underlying structure in a more comprehensive manner. On other hand, high-dimensional genomic features, may be heterogeneous terms both effect sizes sparsity. To account for potential heterogeneity, including sparsity, regularized quantile introduced. The theoretical property proposed investigated, its performance examined through series simulation studies. A real dataset analyzed demonstrate application method.

参考文章(21)
Rahul Mazumder, Jerome H. Friedman, Trevor Hastie, SparseNet: Coordinate Descent With Nonconvex Penalties. Journal of the American Statistical Association. ,vol. 106, pp. 1125- 1138 ,(2011) , 10.1198/JASA.2011.TM09738
Roger Koenker, Quantile regression for longitudinal data Journal of Multivariate Analysis. ,vol. 91, pp. 74- 89 ,(2004) , 10.1016/J.JMVA.2004.05.006
Limin Peng, Jinfeng Xu, Nancy Kutner, Shrinkage estimation of varying covariate effects based on quantile regression Statistics and Computing. ,vol. 24, pp. 853- 869 ,(2014) , 10.1007/S11222-013-9406-4
E. C. Holland, Glioblastoma multiforme: The terminator Proceedings of the National Academy of Sciences of the United States of America. ,vol. 97, pp. 6242- 6244 ,(2000) , 10.1073/PNAS.97.12.6242
Youjuan Li, Ji Zhu, L1-Norm Quantile Regression Journal of Computational and Graphical Statistics. ,vol. 17, pp. 163- 185 ,(2008) , 10.1198/106186008X289155
Hui Zou, The adaptive lasso and its oracle properties Journal of the American Statistical Association. ,vol. 101, pp. 1418- 1429 ,(2006) , 10.1198/016214506000000735
S. Wang, B. Nan, N. Zhu, J. Zhu, Hierarchically penalized Cox regression with grouped variables Biometrika. ,vol. 96, pp. 307- 322 ,(2009) , 10.1093/BIOMET/ASP016
Jian Huang, Shuange Ma, Huiliang Xie, Cun-Hui Zhang, None, A group bridge approach for variable selection Biometrika. ,vol. 96, pp. 339- 355 ,(2009) , 10.1093/BIOMET/ASP020
Jianqing Fan, Runze Li, Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties Journal of the American Statistical Association. ,vol. 96, pp. 1348- 1360 ,(2001) , 10.1198/016214501753382273
Hege Landmark-Høyvik, Vanessa Dumeaux, Daniel Nebdal, Eiliv Lund, Jörg Tost, Yoichiro Kamatani, Victor Renault, Anne-Lise Børresen-Dale, Vessela Kristensen, Hege Edvardsen, Genome-wide association study in breast cancer survivors reveals SNPs associated with gene expression of genes belonging to MHC class I and II. Genomics. ,vol. 102, pp. 278- 287 ,(2013) , 10.1016/J.YGENO.2013.07.006