Dissolved CO2 increases breakthrough porosity in natural porous materials

作者: Y. Yang , S. Bruns , S. L. S. Stipp , H. O. Sørensen

DOI: 10.1021/ACS.EST.7B02157

关键词: ConvectionPorosityAqueous solutionDissolutionMicrostructureGeotechnical engineeringInstabilityPorous mediumChemical engineeringInfiltration (hydrology)Materials science

摘要: When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the infiltration instability and important in geologic carbon storage where dissolution of CO2 flowing water increases acidity. Using numerical simulations with high resolution digital models North Sea chalk, we show that breakthrough porosity an indicator pattern. Dissolution patterns reflect balance between demand supply cumulative surface. The determined composition while relies on field rock’s microstructure. We tested three model scenarios found aqueous dissolves media homogeneously, large porosity. In contrast, solutions without develop elongated convective known as wormholes, low These different are explained ap...

参考文章(72)
J. P. Pereira Nunes, B. Bijeljic, M. J. Blunt, Time-of-Flight Distributions and Breakthrough Curves in Heterogeneous Porous Media Using a Pore-Scale Streamline Tracing Algorithm Transport in Porous Media. ,vol. 109, pp. 317- 336 ,(2015) , 10.1007/S11242-015-0520-Y
Hang Deng, Jeffrey P. Fitts, Dustin Crandall, Dustin McIntyre, Catherine A. Peters, Alterations of Fractures in Carbonate Rocks by CO2-Acidified Brines Environmental Science & Technology. ,vol. 49, pp. 10226- 10234 ,(2015) , 10.1021/ACS.EST.5B01980
Brian R. Ellis, Catherine A. Peters, 3D Mapping of calcite and a demonstration of its relevance to permeability evolution in reactive fractures Advances in Water Resources. ,vol. 95, pp. 246- 253 ,(2016) , 10.1016/J.ADVWATRES.2015.07.023
Christos Nicolaides, Birendra Jha, Luis Cueto‐Felgueroso, Ruben Juanes, Impact of viscous fingering and permeability heterogeneity on fluid mixing in porous media Water Resources Research. ,vol. 51, pp. 2634- 2647 ,(2015) , 10.1002/2014WR015811
Sergi Molins, David Trebotich, Carl I. Steefel, Chaopeng Shen, An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation Water Resources Research. ,vol. 48, ,(2012) , 10.1029/2011WR011404
Catherine Noiriel, Benoît Madé, Philippe Gouze, Impact of coating development on the hydraulic and transport properties in argillaceous limestone fracture Water Resources Research. ,vol. 43, ,(2007) , 10.1029/2006WR005379
Adam V. Subhas, Nick E. Rollins, William M. Berelson, Sijia Dong, Jonathan Erez, Jess F. Adkins, A novel determination of calcite dissolution kinetics in seawater Geochimica et Cosmochimica Acta. ,vol. 170, pp. 51- 68 ,(2015) , 10.1016/J.GCA.2015.08.011
Virat K. Upadhyay, Piotr Szymczak, Anthony J. C. Ladd, Initial conditions or emergence: What determines dissolution patterns in rough fractures? Journal of Geophysical Research. ,vol. 120, pp. 6102- 6121 ,(2015) , 10.1002/2015JB012233
Hamid Emami-Meybodi, Hassan Hassanzadeh, Christopher P. Green, Jonathan Ennis-King, Convective dissolution of CO2 in saline aquifers: Progress in modeling and experiments International Journal of Greenhouse Gas Control. ,vol. 40, pp. 238- 266 ,(2015) , 10.1016/J.IJGGC.2015.04.003
Jiemin Lu, Yousif K. Kharaka, James J. Thordsen, Juske Horita, Athanasios Karamalidis, Craig Griffith, J. Alexandra Hakala, Gil Ambats, David R. Cole, Tommy J. Phelps, Michael A. Manning, Paul J. Cook, Susan D. Hovorka, CO2–rock–brine interactions in Lower Tuscaloosa Formation at Cranfield CO2 sequestration site, Mississippi, U.S.A. Chemical Geology. ,vol. 291, pp. 269- 277 ,(2012) , 10.1016/J.CHEMGEO.2011.10.020