ACO-based hybrid classification system with feature subset selection and model parameters optimization

作者: Cheng-Lung Huang

DOI: 10.1016/J.NEUCOM.2009.07.014

关键词: Model parametersPattern recognitionLinear classifierComputer scienceClassifier (UML)Kernel (linear algebra)Feature selectionArtificial intelligenceAnt colony optimization algorithmsData miningSupport vector machine

摘要: This work presents a novel hybrid ACO-based classifier model that combines ant colony optimization (ACO) and support vector machines (SVM) to improve classification accuracy with small appropriate feature subset. To simultaneously optimize the subset SVM kernel parameters, importance pheromones are used determine transition probability; weight of provided by both considered update pheromone. The experimental results indicate hybridized approach can correctly select discriminating input features also achieve high accuracy.

参考文章(53)
Isabelle Guyon, Steve Gunn, Lotfi A. Zadeh, Masoud Nikravesh, Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing) Springer-Verlag New York, Inc.. ,(2006)
Daniel Merkle, Hartmut Schmeck, Martin Middendorf, Ant colony optimization for resource-constrained project scheduling genetic and evolutionary computation conference. pp. 893- 900 ,(2000)
Jeanny Hérault, Françoise Fogelman-Soulié, Neurocomputing : algorithms, architectures and applications Springer-Verlag. ,(1990)
Yi-Wei Chen, Chih-Jen Lin, Combining SVMs with Various Feature Selection Strategies Feature Extraction. pp. 315- 324 ,(2006) , 10.1007/978-3-540-35488-8_13
William F. Punch, Richard J. Enbody, Paul D. Hovland, Min Pei, Erik D. Goodman, Lai Chia-Shun, Further Research on Feature Selection and Classification Using Genetic Algorithms international conference on genetic algorithms. pp. 557- 564 ,(1993)
Chunkai Zhang, Hong Hu, Ant colony optimization combining with mutual information for feature selection in support vector machines australasian joint conference on artificial intelligence. pp. 918- 921 ,(2005) , 10.1007/11589990_110
Chih-Wei Hsu, Chih-Jen Lin, A Simple Decomposition Method for Support Vector Machines Machine Learning. ,vol. 46, pp. 291- 314 ,(2002) , 10.1023/A:1012427100071