KdV and kink antikink solitons in car-following models

作者: H.X. Ge , R.J. Cheng , S.Q. Dai

DOI: 10.1016/J.PHYSA.2005.03.059

关键词: Work (thermodynamics)Stability conditionsKorteweg–de Vries equationMathematical analysisMathematicsLine (geometry)SolitonCritical point (mathematics)Car followingBurgers' equation

摘要: … The traffic jams could be thus described by the KdV and kink–antikink soliton solutions for … and the corresponding KdV and kink–antikink soliton solutions could be quickly obtained, …

参考文章(17)
'Alī Hasan Nā'ifa, Introduction to perturbation techniques ,(1981)
M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation Physical Review E. ,vol. 51, pp. 1035- 1042 ,(1995) , 10.1103/PHYSREVE.51.1035
Takashi Nagatani, Density waves in traffic flow. Physical Review E. ,vol. 61, pp. 3564- 3570 ,(2000) , 10.1103/PHYSREVE.61.3564
G. F. Newell, Nonlinear Effects in the Dynamics of Car Following Operations Research. ,vol. 9, pp. 209- 229 ,(1961) , 10.1287/OPRE.9.2.209
Rui Jiang, Qingsong Wu, Zuojin Zhu, Full velocity difference model for a car-following theory. Physical Review E. ,vol. 64, pp. 017101- 017101 ,(2001) , 10.1103/PHYSREVE.64.017101
Exact solutions for a discrete system arising in traffic flow Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 428, pp. 49- 69 ,(1990) , 10.1098/RSPA.1990.0025
Takashi Nagatani, Ken Nakanishi, Heike Emmerich, Phase transition in a difference equation model of traffic flow Journal of Physics A: Mathematical and General. ,vol. 31, pp. 5431- 5438 ,(1998) , 10.1088/0305-4470/31/24/005
B. S. Kerner, P. Konhäuser, Cluster effect in initially homogeneous traffic flow. Physical Review E. ,vol. 48, ,(1993) , 10.1103/PHYSREVE.48.R2335
Douglas A. Kurtze, Daniel C. Hong, Traffic jams, granular flow, and soliton selection Physical Review E. ,vol. 52, pp. 218- 221 ,(1995) , 10.1103/PHYSREVE.52.218