Explaining Human Causal Learning using a Dynamic Probabilistic Model

作者: Los Angeles

DOI:

关键词: Causal modelStatistical modelMachine learningComputer scienceArtificial intelligenceCausal learningProbabilistic relevance model

摘要:

参考文章(80)
T. van Boekel, A. Stein, A.H.C. van Bruggen, Preface: Bayesian Statistics and Quality Modelling in the Agro-Food Production Chain Bayesian Statistics and Quality Modelling in the Agro-Food Production Chain. pp. 7- 8 ,(2004)
Robert A Rescorla, None, A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement Classical conditioning II : Current research and theory. pp. 64- 99 ,(1972)
William M. Bolstad, Introduction to Bayesian Statistics ,(2004)
David R. Shanks, Anthony Dickinson, Associative Accounts of Causality Judgment Psychology of Learning and Motivation. ,vol. 21, pp. 229- 261 ,(1988) , 10.1016/S0079-7421(08)60030-4
D. J. C. Mackay, Introduction to Monte Carlo methods Proceedings of the NATO Advanced Study Institute on Learning in graphical models. pp. 175- 204 ,(1998) , 10.1007/978-94-011-5014-9_7
David R. Shanks, Judging Covariation and Causation Blackwell Handbook of Judgment and Decision Making. pp. 220- 239 ,(2008) , 10.1002/9780470752937.CH11
E. T. Jaynes, Probability theory : the logic of science The Mathematical Intelligencer. ,vol. 27, pp. 83- 83 ,(2003) , 10.1017/CBO9780511790423
Niclas Bergman, Recursive Bayesian Estimation : Navigation and Tracking Applications Linköping University. ,(1999)