Properties of a Fermi liquid at the superfluid transition in the crossover region between BCS superconductivity and Bose-Einstein condensation.

作者: R. Haussmann

DOI: 10.1103/PHYSREVB.49.12975

关键词: Distribution functionCondensed matter physicsFermi gasFermi liquid theoryEffective mass (solid-state physics)SuperconductivityQuasiparticlePhysicsFermionSuperfluidity

摘要: The self-consistent equations, which have been derived recently as a microscopic model for the crossover between BCS superconductivity and Bose-Einstein condensation in three-dimensional interacting Fermi system [R. Haussmann, Z. Phys. B 91, 291 (1993)], are solved numerically by repeated Fourier transformation. We find superfluid transition temperature ${\mathit{T}}_{\mathit{c}}$ increases monotonically with increasing attractive coupling strength. Furthermore, we determine chemical potential \ensuremath{\mu}, fermion distribution function n(k), complex effective mass 2${\mathit{m}}^{\mathrm{*}}$ of pairs at T=${\mathit{T}}_{\mathit{c}}$. bound cause power-law tail \ensuremath{\sim}${\mathit{k}}^{\mathrm{\ensuremath{-}}4}$ n(k) large k behave short-living quasiparticles region, is indicated imaginary part 2${\mathit{m}}^{\mathrm{*}}$.

参考文章(7)
R. Haussmann, Crossover from BCS superconductivity to Bose-Einstein condensation: a self-consistent theory European Physical Journal B. ,vol. 91, pp. 291- 308 ,(1993) , 10.1007/BF01344058
P. Nozi�res, S. Schmitt-Rink, Bose condensation in an attractive fermion gas: From weak to strong coupling superconductivity Journal of Low Temperature Physics. ,vol. 59, pp. 195- 211 ,(1985) , 10.1007/BF00683774
M. Drechsler, W. Zwerger, Crossover from BCS-superconductivity to Bose-condensation Annalen der Physik. ,vol. 504, pp. 15- 23 ,(1992) , 10.1002/ANDP.19925040105
C. A. R. Sá de Melo, Mohit Randeria, Jan R. Engelbrecht, Crossover from BCS to Bose superconductivity: Transition temperature and time-dependent Ginzburg-Landau theory Physical Review Letters. ,vol. 71, pp. 3202- 3205 ,(1993) , 10.1103/PHYSREVLETT.71.3202
Elihu Abrahams, Toshihiko Tsuneto, Time Variation of the Ginzburg-Landau Order Parameter Physical Review. ,vol. 152, pp. 416- 432 ,(1966) , 10.1103/PHYSREV.152.416
Josef Stoer, Einführung in die Numerische Mathematik I Mathematics of Computation. ,vol. 28, pp. 664- ,(1972) , 10.1007/978-3-662-06862-5