Statistical mechanics of gravitating systems

作者: T. Padmanabhan

DOI: 10.1016/0370-1573(90)90051-3

关键词: PhysicsStatistical mechanicsStatistical equilibriumGravity (chemistry)Statistical physicsRange (mathematics)Gravitational interactionNewtonian fluid

摘要: The statistical description of a system containing large number particles which interact via Newtonian gravity is discussed. Such exhibits several peculiarities due to the long range, unshielded nature gravitational interaction. These features are illustrated using specific examples. Conceptual issues still unsettled highlighted.

参考文章(52)
Shogo Inagaki, The Gravothermal Catastrophe of Stellar Systems Publications of the Astronomical Society of Japan. ,vol. 32, pp. 213- 227 ,(1980)
Richard Chace Tolman, The Principles of Statistical Mechanics ,(1938)
H. E. Kandrup, ‘Discreteness fluctuations’ and relaxation in stellar dynamical systems Monthly Notices of the Royal Astronomical Society. ,vol. 235, pp. 1157- 1167 ,(1988) , 10.1093/MNRAS/235.4.1157
D Ter Haar, THEORY AND APPLICATIONS OF THE DENSITY MATRIX Reports on Progress in Physics. ,vol. 24, pp. 304- 362 ,(1961) , 10.1088/0034-4885/24/1/307
S. Inagaki, D. Lynden-Bell, Self-similar solutions for post-collapse evolution of globular clusters Monthly Notices of the Royal Astronomical Society. ,vol. 205, pp. 913- 930 ,(1983) , 10.1093/MNRAS/205.4.913
D. Lynden-Bell, P. P. Eggleton, On the consequences of the gravothermal catastrophe Monthly Notices of the Royal Astronomical Society. ,vol. 191, pp. 483- 498 ,(1980) , 10.1093/MNRAS/191.3.483
S. Chandrasekhar, A Statistical Theory of Stellar Encounters. The Astrophysical Journal. ,vol. 94, pp. 511- ,(1941) , 10.1086/144357
P. Hertel, W. Thirring, Free energy of gravitating fermions Communications in Mathematical Physics. ,vol. 24, pp. 22- 36 ,(1971) , 10.1007/BF01907031
J. Katz, D. Lynden-Bell, The gravothermal instability in two dimensions Monthly Notices of the Royal Astronomical Society. ,vol. 184, pp. 709- 712 ,(1978) , 10.1093/MNRAS/184.4.709