The space of isometry covariant tensor valuations

作者: D. Hug , R. Schneider , R. Schuster

DOI: 10.1090/S1061-0022-07-00990-9

关键词: Isometry (Riemannian geometry)MathematicsSymmetric tensorTensor product of Hilbert spacesTensor densityTensorMathematical analysisTensor productPure mathematicsTensor contractionTensor field

摘要: It is known that the basic tensor valuations which, by a result of S. Alesker, span vector space valued, continuous, isometry covariant on convex bodies, are not linearly independent. P. McMullen has discovered linear dependences between these and implicitly raised question as to whether essentially only ones. The present paper provides positive answer this question. dimension valuations, fixed rank given degree homogeneity, explicitly determined. Our approach constructive permits one provide specific basis.

参考文章(17)
Peter McMullen, Rolf Schneider, Valuations on convex bodies Convexity and Its Applications. pp. 170- 247 ,(1983) , 10.1007/978-3-0348-5858-8_9
S. Alesker, Description of Continuous Isometry Covariant Valuations on Convex Sets Geometriae Dedicata. ,vol. 74, pp. 241- 248 ,(1999) , 10.1023/A:1005035232264
P McMullen, Isometry covariant valuations on convex bodies SUPPLEMENTO AI RENDICONTI CIRC MAT PALERMO , 50 pp. 259-271. (1997). ,(1997)
Peter McMULLEN, Valuations and Dissections Handbook of Convex Geometry#R##N#Part B. pp. 933- 988 ,(1993) , 10.1016/B978-0-444-89597-4.50010-X
S Alesker, On P. McMullen's Conjecture on Translation Invariant Valuations Advances in Mathematics. ,vol. 155, pp. 239- 263 ,(2000) , 10.1006/AIMA.2000.1918
S. Alesker, Continuous valuations on convex sets Geometric And Functional Analysis. ,vol. 8, pp. 402- 409 ,(1998) , 10.1007/S000390050061
Daniel A. Klain, A short proof of Hadwiger's characterization theorem Mathematika. ,vol. 42, pp. 329- 339 ,(1995) , 10.1112/S0025579300014625
P. McMullen, Continuous translation invariant valuations on the space of compact convex sets Archiv der Mathematik. ,vol. 34, pp. 377- 384 ,(1980) , 10.1007/BF01224974