Enhanced second-order Stark effect in twisted bilayer graphene quantum dots

作者: Mingli Yang , Xian Wang , Li Zhang , Yingqi Cui

DOI: 10.1007/S12274-021-3318-Y

关键词: Field (physics)Bilayer grapheneStark effectQuantum dotMaterials scienceField strengthCouplingBand gapCondensed matter physicsElectric field

摘要: External electric field and interlayer twist introduce diverse changes in their confined electronic states of bilayer graphene quantum dots. Using a quantum-dot model, the band gaps twisted finite sizes about 1.4–2.4 nm with varying angles are studied presence an electrostatic perpendicular to flakes by means first-principles calculations. The size-dependent widened twist, but narrowed applied field. Their coupling, however, results enhanced Stark response structures which field-induced band-gap variations 3–4 times as large that corresponding untwisted under same strength. exceptional shifts come from asynchronous occupied virtual energy levels, further strong coupling at specific angles. Moreover, shift strength follows quadratic second-order shifting coefficients. tunable suggests gateway engineering dots tuning sizes,

参考文章(74)
Han-Chun Wu, Alexander N Chaika, Tsung-Wei Huang, Askar Syrlybekov, Mourad Abid, Victor Yu Aristov, Olga V Molodtsova, Sergey V Babenkov, D Marchenko, Jaime Sánchez-Barriga, Partha Sarathi Mandal, Andrei Yu Varykhalov, Yuran Niu, Barry E Murphy, Sergey A Krasnikov, Olaf Lübben, Jing Jing Wang, Huajun Liu, Li Yang, Hongzhou Zhang, Mohamed Abid, Yahya T Janabi, Sergei N Molotkov, Ching-Ray Chang, Igor Shvets, None, Transport Gap Opening and High On-Off Current Ratio in Trilayer Graphene with Self-Aligned Nanodomain Boundaries. ACS Nano. ,vol. 9, pp. 8967- 8975 ,(2015) , 10.1021/ACSNANO.5B02877
Jeroen B. Oostinga, Hubert B. Heersche, Xinglan Liu, Alberto F. Morpurgo, Lieven M. K. Vandersypen, Gate-induced insulating state in bilayer graphene devices Nature Materials. ,vol. 7, pp. 151- 157 ,(2008) , 10.1038/NMAT2082
Ashwin Ramasubramaniam, Doron Naveh, Elias Towe, Tunable band gaps in bilayer graphene-BN heterostructures Nano Letters. ,vol. 11, pp. 1070- 1075 ,(2011) , 10.1021/NL1039499
Chunzhong Li, Jianhua Shen, Yihua Zhu, Xiaoling Yang, Jie Zong, Jianmei Zhang, One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light New Journal of Chemistry. ,vol. 36, pp. 97- 101 ,(2012) , 10.1039/C1NJ20658C
R. Bistritzer, A. H. MacDonald, Transport Between Twisted Graphene Layers Physical Review B. ,vol. 81, pp. 245412- ,(2010) , 10.1103/PHYSREVB.81.245412
Hao Zhang, Xiaojun Lv, Yueming Li, Ying Wang, Jinghong Li, P25-Graphene Composite as a High Performance Photocatalyst ACS Nano. ,vol. 4, pp. 380- 386 ,(2010) , 10.1021/NN901221K
Xiaoming Sun, Zhuang Liu, Kevin Welsher, Joshua Tucker Robinson, Andrew Goodwin, Sasa Zaric, Hongjie Dai, None, Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Research. ,vol. 1, pp. 203- 212 ,(2008) , 10.1007/S12274-008-8021-8
Yuanbo Zhang, Tsung-Ta Tang, Caglar Girit, Zhao Hao, Michael C. Martin, Alex Zettl, Michael F. Crommie, Y. Ron Shen, Feng Wang, Direct observation of a widely tunable bandgap in bilayer graphene Nature. ,vol. 459, pp. 820- 823 ,(2009) , 10.1038/NATURE08105
Qiaoliang Bao, Kian Ping Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano. ,vol. 6, pp. 3677- 3694 ,(2012) , 10.1021/NN300989G
D.R. da Costa, M. Zarenia, Andrey Chaves, G.A. Farias, F.M. Peeters, Analytical study of the energy levels in bilayer graphene quantum dots Carbon. ,vol. 78, pp. 392- 400 ,(2014) , 10.1016/J.CARBON.2014.06.078