Enhancing gene set enrichment using networks

作者: Michael Prummer

DOI: 10.12688/F1000RESEARCH.17824.2

关键词: InterpretabilityContext (language use)Construct (python library)WorkflowComputational biologyComputer scienceSet (psychology)CorrelativeGeneVisualization

摘要: Differential gene expression (DGE) studies often suffer from poor interpretability of their primary results, i.e., thousands differentially expressed genes. This has led to the introduction set analysis (GSA) methods that aim at identifying interpretable global effects by grouping genes into sets common context, such as, molecular pathways, biological function or tissue localization. In practice, GSA results in hundreds regulated sets. Similar they contain, are a correlative fashion because share many describe related processes. Using these kind neighborhood information construct networks allows identify highly connected sub-networks as well poorly islands singletons. We show here how topological and other network features can be used filter prioritize routine DGE studies. Community detection combination with automatic labeling representation clusters further constitute an appealing intuitive visualization results. The RICHNET workflow described does not require human intervention thus conveniently incorporated automated pipelines.

参考文章(19)
Peter Langfelder, Steve Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. ,vol. 9, pp. 559- 559 ,(2008) , 10.1186/1471-2105-9-559
M. Girvan, M. E. J. Newman, Community structure in social and biological networks Proceedings of the National Academy of Sciences of the United States of America. ,vol. 99, pp. 7821- 7826 ,(2002) , 10.1073/PNAS.122653799
Marc Vidal, Michael E. Cusick, Albert-László Barabási, Interactome Networks and Human Disease Cell. ,vol. 144, pp. 986- 998 ,(2011) , 10.1016/J.CELL.2011.02.016
A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdottir, P. Tamayo, J. P. Mesirov, Molecular signatures database (MSigDB) 3.0 Bioinformatics. ,vol. 27, pp. 1739- 1740 ,(2011) , 10.1093/BIOINFORMATICS/BTR260
Daniele Merico, Ruth Isserlin, Oliver Stueker, Andrew Emili, Gary D. Bader, Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation PLOS ONE. ,vol. 5, ,(2010) , 10.1371/JOURNAL.PONE.0013984
Blanca E. Himes, Xiaofeng Jiang, Peter Wagner, Ruoxi Hu, Qiyu Wang, Barbara Klanderman, Reid M. Whitaker, Qingling Duan, Jessica Lasky-Su, Christina Nikolos, William Jester, Martin Johnson, Reynold A. Panettieri, Kelan G. Tantisira, Scott T. Weiss, Quan Lu, RNA-Seq Transcriptome Profiling Identifies CRISPLD2 as a Glucocorticoid Responsive Gene that Modulates Cytokine Function in Airway Smooth Muscle Cells PLOS ONE. ,vol. 9, ,(2014) , 10.1371/JOURNAL.PONE.0099625
Matthew E. Ritchie, Belinda Phipson, Di Wu, Yifang Hu, Charity W. Law, Wei Shi, Gordon K. Smyth, limma powers differential expression analyses for RNA-sequencing and microarray studies Nucleic Acids Research. ,vol. 43, pp. e47- e47 ,(2015) , 10.1093/NAR/GKV007
Trey Ideker, Nevan J Krogan, Differential network biology Molecular Systems Biology. ,vol. 8, pp. 565- 565 ,(2012) , 10.1038/MSB.2011.99
Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T Wang, Daniel Ramage, Nada Amin, Benno Schwikowski, Trey Ideker, Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks Genome Research. ,vol. 13, pp. 2498- 2504 ,(2003) , 10.1101/GR.1239303
Sonja Hänzelmann, Robert Castelo, Justin Guinney, GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. ,vol. 14, pp. 7- 7 ,(2013) , 10.1186/1471-2105-14-7