Unsupervised rotating machinery fault diagnosis method based on integrated SAE–DBN and a binary processor

作者: Jialin Li , Xueyi Li , David He , Yongzhi Qu

DOI: 10.1007/S10845-020-01543-8

关键词: Bearing (navigation)Binary numberArtificial intelligenceDeep learningFault (power engineering)Process (computing)Computer sciencePattern recognitionDomain (software engineering)Deep belief networkAutoencoder

摘要: … Finally, the support vector machine (SVM) was used for bearing fault detection. In order to overcome the shortcomings of shallow structure, Yu et al. (2019) proposed a hierarchical …

参考文章(44)
Qing Xiong, Weihua Zhang, Tianwei Lu, Guiming Mei, Shulin Liang, A Fault Diagnosis Method for Rolling Bearings Based on Feature Fusion of Multifractal Detrended Fluctuation Analysis and Alpha Stable Distribution Shock and Vibration. ,vol. 2016, pp. 1- 12 ,(2016) , 10.1155/2016/1232893
Ridha Ziani, Ahmed Felkaoui, Rabah Zegadi, Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized Fisher's criterion Journal of Intelligent Manufacturing. ,vol. 28, pp. 405- 417 ,(2017) , 10.1007/S10845-014-0987-3
Cong Wang, Meng Gan, Chang’an Zhu, Intelligent fault diagnosis of rolling element bearings using sparse wavelet energy based on overcomplete DWT and basis pursuit Journal of Intelligent Manufacturing. ,vol. 28, pp. 1377- 1391 ,(2017) , 10.1007/S10845-015-1056-2
Jürgen Schmidhuber, Deep learning in neural networks Neural Networks. ,vol. 61, pp. 85- 117 ,(2015) , 10.1016/J.NEUNET.2014.09.003
Shrey Modi, Yingzi Lin, Long Cheng, Guosheng Yang, Lizhi Liu, W. J. Zhang, A Socially Inspired Framework for Human State Inference Using Expert Opinion Integration IEEE-ASME Transactions on Mechatronics. ,vol. 16, pp. 874- 878 ,(2011) , 10.1109/TMECH.2011.2161094
Geoffrey E. Hinton, Simon Osindero, Yee-Whye Teh, A fast learning algorithm for deep belief nets Neural Computation. ,vol. 18, pp. 1527- 1554 ,(2006) , 10.1162/NECO.2006.18.7.1527
Shen Yin, Steven X. Ding, Xiaochen Xie, Hao Luo, A Review on Basic Data-Driven Approaches for Industrial Process Monitoring IEEE Transactions on Industrial Electronics. ,vol. 61, pp. 6418- 6428 ,(2014) , 10.1109/TIE.2014.2301773
Haidong Shao, Hongkai Jiang, Xun Zhang, Maogui Niu, Rolling bearing fault diagnosis using an optimization deep belief network Measurement Science and Technology. ,vol. 26, pp. 115002- ,(2015) , 10.1088/0957-0233/26/11/115002
Yaguo Lei, Feng Jia, Jing Lin, Saibo Xing, Steven X. Ding, An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data IEEE Transactions on Industrial Electronics. ,vol. 63, pp. 3137- 3147 ,(2016) , 10.1109/TIE.2016.2519325
Cong Wang, Meng Gan, Chang’an Zhu, A supervised sparsity-based wavelet feature for bearing fault diagnosis Journal of Intelligent Manufacturing. ,vol. 30, pp. 229- 239 ,(2019) , 10.1007/S10845-016-1243-9