Stochastic homogenization of quasilinear PDEs with a spatial degeneracy

作者: François Delarue , Rémi Rhodes

DOI: 10.3233/ASY-2008-0925

关键词: Degenerate energy levelsHomogenization (chemistry)Nonlinear systemDiffusion operatorDegeneracy (mathematics)Mathematical analysisErgodic theoryOrders of approximationMathematicsParabolic partial differential equation

摘要: We investigate stochastic homogenization for some degenerate quasilinear pa rabolic PDEs. The underlying nonlinear operator degenerates along the space variable, uniformly in term: degeneracy points correspond to of a reference diffusion on random medium. Assuming that this is ergodic, we can prove property PDEs, by means first order approximation method. (nonlinear) limit needn't be nondegenerate. Concrete examples are provided.

参考文章(20)
Ning Su, Yong Huang, Xingyou Zhang, Homogenization of degenerate quasilinear parabolic equations with periodic structure Asymptotic Analysis. ,vol. 48, pp. 77- 89 ,(2006)
F. Serra Cassano, R. De Arcangelis, On the homogenization of degenerate elliptic equations in divergence form Journal de Mathématiques Pures et Appliquées. ,vol. 71, pp. 119- 138 ,(1992)
George C Papanicolaou, Srinivasa RS Varadhan, Diffusions with random coefficients U.M.I.. ,(1984)
F. Paronetto, Homogenization of a class of degenerate parabolic equations Asymptotic Analysis. ,vol. 21, pp. 275- 302 ,(1999)
Fabio Paronetto, Homogenization of degenerate elliptic‐parabolic equations Asymptotic Analysis. ,vol. 37, pp. 21- 56 ,(2004)
A. Pankov, Y. Efendiev, HOMOGENIZATION OF NONLINEAR RANDOM PARABOLIC OPERATORS Advances in Differential Equations. ,vol. 10, pp. 1235- 1260 ,(2005)
F. Paronetto, F. Serra Cassano, On the convergence of a class of degenerate parabolic equations Journal de Mathématiques Pures et Appliquées. ,vol. 77, pp. 851- 878 ,(1998) , 10.1016/S0021-7824(01)80001-5