Diversity of alpha-fetoprotein gene expression in mice is generated by a combination of separate enhancer elements

作者: R. Hammer , R Krumlauf , S. Camper , R. Brinster , S. Tilghman

DOI: 10.1126/SCIENCE.2432657

关键词: Transcription (biology)DNAMolecular biologyGeneEnhancer RNAsLiver regenerationGene expressionEnhancerBiologyEnhancer trap

摘要: The 59 flanking region of the mouse alpha-fetoprotein (AFP) gene contains a tissue-specific promoter and three upstream regulatory elements that behave as classical enhancers. At least one these enhancers is now shown to be required for expression AFP when it introduced into genome by microinjection cloned DNA fragments fertilized eggs. Each enhancer can direct in appropriate tissues, visceral endoderm yolk sac, fetal liver, gastrointestinal tract, but each exerts different influence tissues. These differences may explain diversity levels characteristic gene. postnatal repression transcription both liver gut, well reinitiation its during regeneration, mimicked linked domains together or singly. Thus, sequence responsible directing activation transcription, repression, reinduction are contained limited segment within (or both) operative absence closely albumin

参考文章(29)
M. J. Garabedian, M. C. Hung, P. C. Wensink, Independent control elements that determine yolk protein gene expression in alternative Drosophila tissues. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 82, pp. 1396- 1400 ,(1985) , 10.1073/PNAS.82.5.1396
P. S. Thomas, Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 77, pp. 5201- 5205 ,(1980) , 10.1073/PNAS.77.9.5201
Ralph L. Brinster, Kindred A. Ritchie, Robert E. Hammer, Rebecca L. O'Brien, Benjamin Arp, Ursula Storb, Expression of a microinjected immunoglobulin gene in the spleen of transgenic mice Nature. ,vol. 306, pp. 332- 336 ,(1983) , 10.1038/306332A0
Stephan D Voss, Uwe Schlokat, Peter Gruss, The role of enhancers in the regulation of cell-type-specific transcriptional control Trends in Biochemical Sciences. ,vol. 11, pp. 287- 289 ,(1986) , 10.1016/0968-0004(86)90031-9
F. Costantini, G. Radice, J. Magram, G. Stamatoyannopoulos, T. Papayannopoulou, K. Chada, Developmental regulation of human globin genes in transgenic mice. Cold Spring Harbor Symposia on Quantitative Biology. ,vol. 50, pp. 361- 370 ,(1985) , 10.1101/SQB.1985.050.01.046
R.E. Hammer, R.L. Brinster, R.D. Palmiter, Use of gene transfer to increase animal growth. Cold Spring Harbor Symposia on Quantitative Biology. ,vol. 50, pp. 379- 387 ,(1985) , 10.1101/SQB.1985.050.01.048
S. M. Tilghman, A. Belayew, Transcriptional control of the murine albumin/alpha-fetoprotein locus during development Proceedings of the National Academy of Sciences of the United States of America. ,vol. 79, pp. 5254- 5257 ,(1982) , 10.1073/PNAS.79.17.5254
M.A. Innis, D.L. Miller, alpha-Fetoprotein gene expression. Partial DNA sequence and COOH-terminal homology to albumin. Journal of Biological Chemistry. ,vol. 255, pp. 8994- 8996 ,(1980) , 10.1016/S0021-9258(19)70511-0
M.B. Gorin, D.L. Cooper, F. Eiferman, P. van de Rijn, S.M. Tilghman, The evolution of alpha-fetoprotein and albumin. I. A comparison of the primary amino acid sequences of mammalian alpha-fetoprotein and albumin. Journal of Biological Chemistry. ,vol. 256, pp. 1954- 1959 ,(1981) , 10.1016/S0021-9258(19)69900-X
D. Kioussis, F. Eiferman, P. van de Rijn, M.B. Gorin, R.S. Ingram, S.M. Tilghman, The evolution of alpha-fetoprotein and albumin. II. The structures of the alpha-fetoprotein and albumin genes in the mouse. Journal of Biological Chemistry. ,vol. 256, pp. 1960- 1967 ,(1981) , 10.1016/S0021-9258(19)69901-1