Anti-bacterial glycosyl triazoles - Identification of an N-acetylglucosamine derivative with bacteriostatic activity against Bacillus.

作者: Helene Kuhn , Danielle Gutelius , Eimear Black , Christina Nadolny , Amit Basu

DOI: 10.1039/C4MD00127C

关键词: BacteriaBacillus subtilisBiochemistryN-AcetylglucosamineCell growthBacterial cell structureTriazolePeptidoglycanGlycosylBiology

摘要: N-Acetylglucosaminidases (GlcNAcases) play an important role in the remodeling and recycling of bacterial peptidoglycan. Inhibitors GlcNAcases can serve as antibacterial agents provide opportunity for development new antibiotics. We report synthesis triazole derivatives N-acetylglucosamine using a copper promoted azide–alkyne coupling reaction between 1-azido-N-acetylglucosamine small library terminal alkynes prepared via Ugi reaction. These compounds were evaluated their ability to inhibit growth bacteria. Two that show bacteriostatic activity against Bacillus identified, with MIC values approximately 60 μM both cases. subtilis cultured presence sub-MIC amounts glycosyl inhibitors exhibit elongated phenotype characteristic impaired cell division. This represents first wall demonstrate inhibition whole assays.

参考文章(36)
Mathilde Bonis, Allison Williams, Stephanie Guadagnini, Catherine Werts, Ivo G. Boneca, The effect of bulgecin A on peptidoglycan metabolism and physiology of Helicobacter pylori. Microbial Drug Resistance. ,vol. 18, pp. 230- 239 ,(2012) , 10.1089/MDR.2011.0231
Ganesh Ram R. Visweswaran, Anton Steen, Kees Leenhouts, Monika Szeliga, Beata Ruban, Anne Hesseling-Meinders, Bauke W. Dijkstra, Oscar P. Kuipers, Jan Kok, Girbe Buist, AcmD, a Homolog of the Major Autolysin AcmA of Lactococcus lactis, Binds to the Cell Wall and Contributes to Cell Separation and Autolysis PLoS ONE. ,vol. 8, pp. e72167- ,(2013) , 10.1371/JOURNAL.PONE.0072167
Gavin J. Horsburgh, Abdelmadjid Atrih, Michael P. Williamson, Simon J. Foster, LytG of Bacillus subtilis is a novel peptidoglycan hydrolase: the major active glucosaminidase. Biochemistry. ,vol. 42, pp. 257- 264 ,(2003) , 10.1021/BI020498C
Simone Dedola, David L. Hughes, Sergey A. Nepogodiev, Martin Rejzek, Robert A. Field, Synthesis of α- and β-d-glucopyranosyl triazoles by CuAAC ‘click chemistry’: reactant tolerance, reaction rate, product structure and glucosidase inhibitory properties Carbohydrate Research. ,vol. 345, pp. 1123- 1134 ,(2010) , 10.1016/J.CARRES.2010.03.041
Lauren L. Rossi, Amit Basu, Glycosidase inhibition by 1-glycosyl-4-phenyl triazoles Bioorganic & Medicinal Chemistry Letters. ,vol. 15, pp. 3596- 3599 ,(2005) , 10.1016/J.BMCL.2005.05.081
Bohdan Ostash, Suzanne Walker, Bacterial transglycosylase inhibitors Current Opinion in Chemical Biology. ,vol. 9, pp. 459- 466 ,(2005) , 10.1016/J.CBPA.2005.08.014
Michel Weïwer, Chi-Chang Chen, Melissa M. Kemp, Robert J. Linhardt, Synthesis and Biological Evaluation of Non-Hydrolyzable 1,2,3-Triazole-Linked Sialic Acid Derivatives as Neuraminidase Inhibitors European Journal of Organic Chemistry. ,vol. 2009, pp. 2611- 2620 ,(2009) , 10.1002/EJOC.200900117
C.W. Reid, N.T. Blackburn, B.A. Legaree, F.-I. Auzanneau, A.J. Clarke, Inhibition of membrane-bound lytic transglycosylase B by NAG-thiazoline FEBS Letters. ,vol. 574, pp. 73- 79 ,(2004) , 10.1016/J.FEBSLET.2004.08.006
Benjamin Pluvinage, Keith A. Stubbs, Mitchell Hattie, David J. Vocadlo, Alisdair B. Boraston, Inhibition of the family 20 glycoside hydrolase catalytic modules in the Streptococcus pneumoniae exo-β-d-N-acetylglucosaminidase, StrH Organic and Biomolecular Chemistry. ,vol. 11, pp. 7907- 7915 ,(2013) , 10.1039/C3OB41579A