作者: Yutaka Shikano , Hosho Katsura
DOI: 10.1103/PHYSREVE.82.031122
关键词: Quantum dynamics 、 Quantum operation 、 Quantum algorithm 、 Quantum walk 、 Quantum statistical mechanics 、 Quantum dissipation 、 Quantum process 、 Quantum mechanics 、 Mathematics 、 Statistical physics 、 Quantum probability
摘要: We introduce and study a class of discrete-time quantum walks on one-dimensional lattice. In contrast to the standard homogeneous walks, coin operators are inhomogeneous depend their positions in this models. The models shown be self-dual with respect Fourier transform, which is analogous Aubry-Andre model describing tight-binding quasiperiodic potential. When period incommensurate lattice spacing, we rigorously show that limit distribution walk localized at origin. also numerically eigenvalues one-step time evolution operator find Hofstadter butterfly spectrum indicates fractal nature walks.