How Many Channels are Enough? Evaluation of Tonic Cranial Muscle Artefact Reduction Using ICA with Different Numbers of EEG Channels

作者: Azin S. Janani , Tyler S. Grummett , Hanieh Bakhshayesh , Trent W. Lewis , John O. Willoughby

DOI: 10.23919/EUSIPCO.2018.8553261

关键词: Artificial intelligencePattern recognitionIndependent component analysisScalpEeg recordingElectromyographyTonic (physiology)Computer scienceNeurophysiologyElectroencephalography

摘要: Scalp electrical recordings, or electroencephalograms (EEG), are heavily contaminated by cranial and cervical muscle activity from as low 20 hertz, even in relaxed conditions. It is therefore necessary to reduce remove this contamination enable reliable exploration of brain neurophysiological responses. measurements record many sources, including neural muscular. Independent Component Analysis (ICA) produces components ideally corresponding separate but the number limited EEG channels. In practice, at most 30% cleanly sources. Increasing channels results more components, with a significant increase costs data collection computation. Here we present assist selecting an appropriate Our unique database pharmacologically paralysed subjects provides way objectively compare different approaches achieving ideal, free recording. We evaluated automatic muscle-removing approach, based on ICA, numbers channels: 21, 32, 64, 115. show that, for fixed length data, 21 insufficient tonic artefact, that increasing 115 does result better artefact reduction.

参考文章(21)
Vasco Vinhas, Eugenio Oliveira, Luis Paulo Reis, Realtime Dynamic Multimedia Storyline Based on Online Audience Biometric Information New Directions in Intelligent Interactive Multimedia. pp. 545- 554 ,(2008) , 10.1007/978-3-540-68127-4_56
Chi Zhang, Li Tong, Ying Zeng, Jingfang Jiang, Haibing Bu, Bin Yan, Jianxin Li, Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information. BioMed Research International. ,vol. 2015, pp. 720450- 720450 ,(2015) , 10.1155/2015/720450
Alexander J. Shackman, Brenton W. McMenamin, Heleen A. Slagter, Jeffrey S. Maxwell, Lawrence L. Greischar, Richard J. Davidson, Electromyogenic Artifacts and Electroencephalographic Inferences Brain Topography. ,vol. 22, pp. 7- 12 ,(2009) , 10.1007/S10548-009-0079-4
Emma M. Whitham, Trent Lewis, Kenneth J. Pope, Sean P. Fitzgibbon, C. Richard Clark, Stephen Loveless, Dylan DeLosAngeles, Angus K. Wallace, Marita Broberg, John O. Willoughby, Thinking activates EMG in scalp electrical recordings. Clinical Neurophysiology. ,vol. 119, pp. 1166- 1175 ,(2008) , 10.1016/J.CLINPH.2008.01.024
Kenneth J. Pope, Sean P. Fitzgibbon, Trent W. Lewis, Emma M. Whitham, John O. Willoughby, Relation of gamma oscillations in scalp recordings to muscular activity. Brain Topography. ,vol. 22, pp. 13- 17 ,(2009) , 10.1007/S10548-009-0081-X
Emma M. Whitham, Kenneth J. Pope, Sean P. Fitzgibbon, Trent Lewis, C. Richard Clark, Stephen Loveless, Marita Broberg, Angus Wallace, Dylan DeLosAngeles, Peter Lillie, Andrew Hardy, Rik Fronsko, Alyson Pulbrook, John O. Willoughby, Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clinical Neurophysiology. ,vol. 118, pp. 1877- 1888 ,(2007) , 10.1016/J.CLINPH.2007.04.027
T. Radüntz, J. Scouten, O. Hochmuth, B. Meffert, EEG artifact elimination by extraction of ICA-component features using image processing algorithms. Journal of Neuroscience Methods. ,vol. 243, pp. 84- 93 ,(2015) , 10.1016/J.JNEUMETH.2015.01.030
Tzyy-Ping Jung, Scott Makeig, Colin Humphries, Te-Won Lee, Martin J. McKeown, Vicente Iragui, Terrence J. Sejnowski, Removing electroencephalographic artifacts by blind source separation. Psychophysiology. ,vol. 37, pp. 163- 178 ,(2000) , 10.1111/1469-8986.3720163
K.J. Pope, R.E. Bogner, Blind Signal Separation I. Linear, Instantaneous Combinations Digital Signal Processing. ,vol. 6, pp. 5- 16 ,(1996) , 10.1006/DSPR.1996.0002