Experimental investigation on melting heat transfer characteristics of lauric acid in a rectangular thermal storage unit

作者: Hossein Shokouhmand , Babak Kamkari

DOI: 10.1016/J.EXPTHERMFLUSCI.2013.06.010

关键词: Phase-change materialConvectionConvective heat transferHeat transferFilm temperatureHeat transfer coefficientThermodynamicsThermal conductionMaterials scienceThermal resistance

摘要: Abstract This paper presents an experimental effort to visualize temperature field and melt front evolution during solid–liquid phase change process. The study is focused on the melting of lauric acid in a rectangular thermal storage unit heated from one side. Thermophysical properties are determined found be desirable for application as medium material (PCM). Image processing photographs together with recorded temperatures used calculate fractions, temporal heat transfer characteristics, including average Nusselt number hot wall well local rates front. Moreover, interface morphology employed infer dominant mechanisms time-dependent flow structures different stages Results indicate that initial stage melting, conduction mode transfer, followed by transition convection regime dominated at later times. Approaching end process, bulk liquid PCM increases stratified appears upper part enclosure which reveals depression currents.

参考文章(27)
André Bontemps, Maha Ahmad, Kevin Johannès, Hébert Sallée, Experimental and modelling study of twin cells with latent heat storage walls Energy and Buildings. ,vol. 43, pp. 2456- 2461 ,(2011) , 10.1016/J.ENBUILD.2011.05.030
Abdul Jabbar N. Khalifa, Kadhim H. Suffer, Mahmoud Sh. Mahmoud, A storage domestic solar hot water system with a back layer of phase change material Experimental Thermal and Fluid Science. ,vol. 44, pp. 174- 181 ,(2013) , 10.1016/J.EXPTHERMFLUSCI.2012.05.017
F.L. Tan, C.P. Tso, Cooling of mobile electronic devices using phase change materials Applied Thermal Engineering. ,vol. 24, pp. 159- 169 ,(2004) , 10.1016/J.APPLTHERMALENG.2003.09.005
Theodore D. Swanson, Gajanana C. Birur, NASA thermal control technologies for robotic spacecraft Applied Thermal Engineering. ,vol. 23, pp. 1055- 1065 ,(2003) , 10.1016/S1359-4311(03)00036-X
A. Felix Regin, S.C. Solanki, J.S. Saini, Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations Renewable Energy. ,vol. 31, pp. 2025- 2041 ,(2006) , 10.1016/J.RENENE.2005.10.011
Ying-Che Weng, Hung-Pin Cho, Chih-Chung Chang, Sih-Li Chen, Heat pipe with PCM for electronic cooling Applied Energy. ,vol. 88, pp. 1825- 1833 ,(2011) , 10.1016/J.APENERGY.2010.12.004
S.C. Fok, W. Shen, F.L. Tan, Cooling of portable hand-held electronic devices using phase change materials in finned heat sinks International Journal of Thermal Sciences. ,vol. 49, pp. 109- 117 ,(2010) , 10.1016/J.IJTHERMALSCI.2009.06.011
F. Wolff, R. Viskanta, Solidification of a pure metal at a vertical wall in the presence of liquid superheat International Journal of Heat and Mass Transfer. ,vol. 31, pp. 1735- 1744 ,(1988) , 10.1016/0017-9310(88)90285-2
H. Shmueli, G. Ziskind, R. Letan, Melting in a vertical cylindrical tube: Numerical investigation and comparison with experiments International Journal of Heat and Mass Transfer. ,vol. 53, pp. 4082- 4091 ,(2010) , 10.1016/J.IJHEATMASSTRANSFER.2010.05.028
V. Pandiyarajan, M. Chinna Pandian, E. Malan, R. Velraj, R.V. Seeniraj, Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system Applied Energy. ,vol. 88, pp. 77- 87 ,(2011) , 10.1016/J.APENERGY.2010.07.023