Modular inequalities for the maximal operator in variable Lebesgue spaces

作者: David Cruz-Uribe , Giovanni Di Fratta , Alberto Fiorenza

DOI: 10.1016/J.NA.2018.01.007

关键词: Maximal operatorVariable (mathematics)Lp spaceCombinatoricsMathematicsConstant (mathematics)Maximal functionBounded functionExponentOperator (physics)

摘要: Abstract A now classical result in the theory of variable Lebesgue spaces due to Lerner (2005) is that a modular inequality for Hardy–Littlewood maximal function L p ( ⋅ ) R n holds if and only exponent constant. We generalize this give new simpler proof. then find necessary sufficient conditions validity weaker ∫ Ω M f x d ⩽ c 1 | q + 2 , where are non-negative constants any subset . As corollary we get T operator bounded on ∞

参考文章(18)
Bruno Bongioanni, Modular inequalities of maximal operators in Orlicz spaces Revista De La Union Matematica Argentina. ,vol. 44, pp. 31- 48 ,(2003)
C. J. Neugebauer, D. Cruz-Uribe, A. Firorenza, The maximal function on variable spaces. Annales Academiae Scientiarum Fennicae. Mathematica. ,vol. 28, pp. 223- 238 ,(2003)
B. Cekic, A.V. Kalinin, R.A. Mashiyev, M. Avci, Lp(x)(Ω)-estimates of vector fields and some applications to magnetostatics problems Journal of Mathematical Analysis and Applications. ,vol. 389, pp. 838- 851 ,(2012) , 10.1016/J.JMAA.2011.12.029
B. Amaziane, L. Pankratov, A. Piatnitski, Nonlinear flow through double porosity media in variable exponent Sobolev spaces Nonlinear Analysis-real World Applications. ,vol. 10, pp. 2521- 2530 ,(2009) , 10.1016/J.NONRWA.2008.05.008
D. Cruz-Uribe SFO, A. Fiorenza, "L log L" results for the maximal operator in variable "Lp" spaces Transactions of the American Mathematical Society. ,vol. 361, pp. 2631- 2647 ,(2008) , 10.1090/S0002-9947-08-04608-4
Andrei K. Lerner, On modular inequalities in variable L p spaces Archiv der Mathematik. ,vol. 85, pp. 538- 543 ,(2005) , 10.1007/S00013-005-1302-5
Emilio Acerbi, Giuseppe Mingione, Regularity Results for Stationary Electro-Rheological Fluids Archive for Rational Mechanics and Analysis. ,vol. 164, pp. 213- 259 ,(2002) , 10.1007/S00205-002-0208-7
María J. CARRO, Ludmila NIKOLOVA, Some extensions of the Marcinkiewicz interpolation theorem in terms of modular inequalities Journal of The Mathematical Society of Japan. ,vol. 55, pp. 385- 394 ,(2003) , 10.2969/JMSJ/1191419122
María J. Carro, Hans Heinig, Modular inequalities for the Calderón operator Tohoku Mathematical Journal. ,vol. 52, pp. 31- 46 ,(2000) , 10.2748/TMJ/1178224656
V. P. Kabaila, Inclusion of the space Lp (?) in Lr (?) Lithuanian Mathematical Journal. ,vol. 21, pp. 342- 345 ,(1982) , 10.1007/BF00969854