Time Discretization Techniques

作者: S. Gottlieb , D.I. Ketcheson

DOI: 10.1016/BS.HNA.2016.08.001

关键词: Time evolutionConstraint (information theory)Edge (geometry)Stability (probability)Mathematical analysisDiscretizationMathematicsOrdinary differential equationPartial differential equationRunge–Kutta methods

摘要: Abstract The time discretization of hyperbolic partial differential equations is typically the evolution a system ordinary obtained by spatial original problem. Methods for this include multistep, multistage, or multiderivative methods, as well combination these approaches. step constraint mainly result absolute stability requirement, additional conditions that mimic physical properties solution, such positivity total variation stability. These may be required when solution develops shocks sharp gradients. This chapter contains review some methods historically used PDEs, cutting edge are now commonly used.

参考文章(157)
Andrew Christlieb, Benjamin Ong, Jing-Mei Qiu, Integral deferred correction methods constructed with high order Runge-Kutta integrators Mathematics of Computation. ,vol. 79, pp. 761- 783 ,(2009) , 10.1090/S0025-5718-09-02276-5
Sigal Gottlieb, Zachary Grant, Daniel Higgs, Optimal explicit strong stability preserving Runge–Kutta methods with high linear order and optimal nonlinear order Mathematics of Computation. ,vol. 84, pp. 2743- 2761 ,(2015) , 10.1090/MCOM/2966
David I. Ketcheson, Highly Efficient Strong Stability-Preserving Runge–Kutta Methods with Low-Storage Implementations SIAM Journal on Scientific Computing. ,vol. 30, pp. 2113- 2136 ,(2008) , 10.1137/07070485X
Peter Lax, Burton Wendroff, Systems of conservation laws Communications on Pure and Applied Mathematics. ,vol. 13, pp. 217- 237 ,(1960) , 10.1002/CPA.3160130205
Stanley Osher, Sukumar Chakravarthy, High Resolution Schemes and the Entropy Condition SIAM Journal on Numerical Analysis. ,vol. 21, pp. 104- 133 ,(1984) , 10.1007/978-3-642-60543-7_7
A. Mignone, The Dynamics of Radiative Shock Waves: Linear and Nonlinear Evolution The Astrophysical Journal. ,vol. 626, pp. 373- 388 ,(2005) , 10.1086/429905
Aly-Khan Kassam, Lloyd N. Trefethen, Fourth-Order Time-Stepping for Stiff PDEs SIAM Journal on Scientific Computing. ,vol. 26, pp. 1214- 1233 ,(2005) , 10.1137/S1064827502410633
Jacques-Louis Lions, Yvon Maday, Gabriel Turinici, Résolution d'EDP par un schéma en temps «pararéel » Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. ,vol. 332, pp. 661- 668 ,(2001) , 10.1016/S0764-4442(00)01793-6
J. F. B. M. Kraaijevanger, Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems Numerische Mathematik. ,vol. 48, pp. 303- 322 ,(1986) , 10.1007/BF01389477
Inmaculada Higueras, On Strong Stability Preserving Time Discretization Methods Journal of Scientific Computing. ,vol. 21, pp. 193- 223 ,(2004) , 10.1023/B:JOMP.0000030075.59237.61