A Simple Bayesian Algorithm for Feature Ranking in High Dimensional Regression Problems

作者: Enes Makalic , Daniel F. Schmidt

DOI: 10.1007/978-3-642-25832-9_23

关键词: Simple (abstract algebra)MathematicsMachine learningRandom forestFeature rankingArtificial intelligenceRegressionParametric statisticsCredible intervalCovariateFeature selection

摘要: Variable selection or feature ranking is a problem of fundamental importance in modern scientific research where data sets comprising hundreds thousands potential predictor features and only few hundred samples are not uncommon. This paper introduces novel Bayesian algorithm for (BFR) which does require any user specified parameters. The BFR very general can be applied to both parametric regression classification problems. An empirical comparison against random forests marginal covariate screening demonstrates promising performance real artificial experiments.

参考文章(19)
Grace Wahba, Chenlei Leng, Yi Lin, A NOTE ON THE LASSO AND RELATED PROCEDURES IN MODEL SELECTION ,(2006)
Minjung Kyung, Jeff Gill, Malay Ghosh, George Casella, Penalized regression, standard errors, and Bayesian lassos Bayesian Analysis. ,vol. 5, pp. 369- 411 ,(2010) , 10.1214/10-BA607
Trevor Park, George Casella, The Bayesian Lasso Journal of the American Statistical Association. ,vol. 103, pp. 681- 686 ,(2008) , 10.1198/016214508000000337
Robert Tibshirani, Trevor Hastie, Hui Zou, On the “degrees of freedom” of the lasso Annals of Statistics. ,vol. 35, pp. 2173- 2192 ,(2007) , 10.1214/009053607000000127
Peter Hall, Hugh Miller, Using Generalized Correlation to Effect Variable Selection in Very High Dimensional Problems Journal of Computational and Graphical Statistics. ,vol. 18, pp. 533- 550 ,(2009) , 10.1198/JCGS.2009.08041
G. M. James, P. Radchenko, A generalized Dantzig selector with shrinkage tuning Biometrika. ,vol. 96, pp. 323- 337 ,(2009) , 10.1093/BIOMET/ASP013
Hui Zou, The adaptive lasso and its oracle properties Journal of the American Statistical Association. ,vol. 101, pp. 1418- 1429 ,(2006) , 10.1198/016214506000000735
Robert Tibshirani, Trevor Hastie, Berwin A. Turlach, Bradley Efron, Jean Michel Loubes, Jean Michel Loubes, Hemant Ishwaran, Robert A. Stine, Keith Knight, Sanford Weisberg, Saharon Rosset, Saharon Rosset, Iain Johnstone, Pascal Massart, Pascal Massart, David Madigan, J. I. Zhu, Greg Ridgeway, Greg Ridgeway, Least angle regression Annals of Statistics. ,vol. 32, pp. 407- 499 ,(2004) , 10.1214/009053604000000067
Leo Breiman, Better subset regression using the nonnegative garrote Technometrics. ,vol. 37, pp. 373- 384 ,(1995) , 10.2307/1269730
Jianqing Fan, Richard Samworth, Yichao Wu, Ultrahigh Dimensional Feature Selection: Beyond The Linear Model Journal of Machine Learning Research. ,vol. 10, pp. 2013- 2038 ,(2009)