Finite sample performance of deconvolving density estimators

作者: M.P. Wand

DOI: 10.1016/S0167-7152(97)00110-7

关键词: MathematicsErrors-in-variables modelsObservational errorDensity estimationSample size determinationApplied mathematicsNonparametric regressionRate of convergenceEstimatorGaussianStatistics

摘要: Recent studies have shown that the asymptotic performance of nonparametric curve estimators in presence measurement error will often be very much inferior to when observations are error-free. For example, deconvolution Gaussian worsens usual algebraic convergence rates kernel slow logarithmic rates. However, mean large sample sizes may required for asymptotics take effect, so finite properties estimator not well described by asymptotics. In this article calculations performed important cases and Laplacian which provide insight into feasibility deconvolving density practical sizes. Our results indicate lower levels can perform reasonable

参考文章(15)
Jianqing Fan, Deconvolution with supersmooth distributions Canadian Journal of Statistics-revue Canadienne De Statistique. ,vol. 20, pp. 155- 169 ,(1992) , 10.2307/3315465
Jianqing Fan, Young K. Truong, Nonparametric regression with errors in variables Annals of Statistics. ,vol. 21, pp. 1900- 1925 ,(1993) , 10.1214/AOS/1176349402
J. S. Marron, M. P. Wand, Exact Mean Integrated Squared Error Annals of Statistics. ,vol. 20, pp. 712- 736 ,(1992) , 10.1214/AOS/1176348653
Raymond J. Carroll, Peter Hall, Optimal Rates of Convergence for Deconvolving a Density Journal of the American Statistical Association. ,vol. 83, pp. 1184- 1186 ,(1988) , 10.1080/01621459.1988.10478718
Luc Devroye, Consistent deconvolution in density estimation Canadian Journal of Statistics-revue Canadienne De Statistique. ,vol. 17, pp. 235- 239 ,(1989) , 10.2307/3314852
Leonard A. Stefanski, Rates of convergence of some estimators in a class of deconvolution problems Statistics & Probability Letters. ,vol. 9, pp. 229- 235 ,(1990) , 10.1016/0167-7152(90)90061-B
Jianqing Fan, On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems Annals of Statistics. ,vol. 19, pp. 1257- 1272 ,(1991) , 10.1214/AOS/1176348248
M.P. Wand, Finite sample performance of density estimators under moving average dependence Statistics & Probability Letters. ,vol. 13, pp. 109- 115 ,(1992) , 10.1016/0167-7152(92)90084-I
Ming Chung Liu, R.Y. Taylor, Simulations and computations of nonparametric density estimates for the deconvolution problem Journal of Statistical Computation and Simulation. ,vol. 35, pp. 145- 167 ,(1990) , 10.1080/00949659008811241
Ming Chung Liu, Robert L. Taylor, A consistent nonparametric density estimator for the deconvolution problem Canadian Journal of Statistics-revue Canadienne De Statistique. ,vol. 17, pp. 427- 438 ,(1989) , 10.2307/3315482