A note on finding convex hulls via maximal vectors

作者: Luc Devroye

DOI: 10.1016/0020-0190(80)90036-8

关键词: MathematicsConvex analysisProper convex functionRadon's theoremOrthogonal convex hullDiscrete mathematicsMinkowski additionConvex setCombinatoricsConvex hullConvex polytope

摘要:

参考文章(9)
William F. Eddy, A New Convex Hull Algorithm for Planar Sets ACM Transactions on Mathematical Software. ,vol. 3, pp. 398- 403 ,(1977) , 10.1145/355759.355766
Jon Louis Bentley, Hsiang-Tsung Kung, Mario Schkolnick, Clark D Thompson, On the Average Number of Maxima in a Set of Vectors and Applications Journal of the ACM. ,vol. 25, pp. 536- 543 ,(1978) , 10.1145/322092.322095
R.A. Jarvis, On the identification of the convex hull of a finite set of points in the plane Information Processing Letters. ,vol. 2, pp. 18- 21 ,(1973) , 10.1016/0020-0190(73)90020-3
A. Rényi, R. Sulanke, ZufÄllige konvexe Polygone in einem Ringgebiet Probability Theory and Related Fields. ,vol. 9, pp. 146- 157 ,(1968) , 10.1007/BF01851005
Jon Louis Bentley, Michael Ian Shamos, Divide and conquer for linear expected time Information Processing Letters. ,vol. 7, pp. 87- 91 ,(1978) , 10.1016/0020-0190(78)90051-0
R.L. Graham, An efficient algorith for determining the convex hull of a finite planar set Information Processing Letters. ,vol. 1, pp. 132- 133 ,(1972) , 10.1016/0020-0190(72)90045-2
H. Raynaud, Sur L'enveloppe convexe des nuages de points aleatoires dans Rn. I Journal of Applied Probability. ,vol. 7, pp. 35- 48 ,(1970) , 10.2307/3212146
F. P. Preparata, S. J. Hong, Convex hulls of finite sets of points in two and three dimensions Communications of the ACM. ,vol. 20, pp. 87- 93 ,(1977) , 10.1145/359423.359430
Michael Ian Shamos, Geometric complexity Proceedings of seventh annual ACM symposium on Theory of computing - STOC '75. pp. 224- 233 ,(1975) , 10.1145/800116.803772