HypeRvieW: an open source desktop application for hyperspectral remote-sensing data processing

作者: Alberto S. Garea , Álvaro Ordóñez , Dora B. Heras , Francisco Argüello

DOI: 10.1080/01431161.2016.1244363

关键词: PreprocessorModular designMachine learningData processingArtificial intelligenceData miningComputer scienceInterface (Java)Hyperspectral imagingReference dataSegmentationGraphical user interface

摘要: In this article, we present a desktop application for the analysis, reference data generation, registration, and supervised spatial-spectral classification of hyperspectral remote-sensing images through simple intuitive interface. Regarding ability, different schemes are implemented by using chain structure as base. It consists five configurable stages that must be executed in fixed order: preprocessing, spatial processing, pixel-wise classification, combination, post-processing. The modular implementation makes its extension easy adding new algorithms each stage or chains. tool has been designed platform is open to incorporation users interested comparing schemes. As an example use, scheme based on Quick Shift QS algorithm segmentation Extreme Learning Machines ELMs Support Vector SVMs also proposed. license-free, runs Linux operating system, was developed C language GTK library, well other free libraries build graphical user interfaces GUIs.

参考文章(32)
Pablo Quesada-Barriuso, Francisco Argüello, Dora B. Heras, Computing Efficiently Spectral-Spatial Classification of Hyperspectral Images on Commodity GPUs Springer, Cham. pp. 19- 42 ,(2014) , 10.1007/978-3-319-01649-8_2
Brian Fulkerson, Stefano Soatto, Really quick shift: image segmentation on a GPU european conference on computer vision. pp. 350- 358 ,(2010) , 10.1007/978-3-642-35740-4_27
Joanne M. Garrett, Anthony J. Viera, Understanding interobserver agreement: the kappa statistic. Family Medicine. ,vol. 37, pp. 360- 363 ,(2005)
Stefan Steiniger, Erwan Bocher, An overview on current free and open source desktop GIS developments International Journal of Geographical Information Science. ,vol. 23, pp. 1345- 1370 ,(2009) , 10.1080/13658810802634956
Antonio Plaza, Prashanth Reddy Marpu, Jon Atli Benediktsson, Sergio Bernabé, A new parallel tool for classification of remotely sensed imagery Computers & Geosciences. ,vol. 46, pp. 208- 218 ,(2012) , 10.1016/J.CAGEO.2011.12.009
Pablo Quesada-Barriuso, Dora B. Heras, Francisco Argüello, Efficient 2D and 3D watershed on graphics processing unit: block-asynchronous approaches based on cellular automata Computers & Electrical Engineering. ,vol. 39, pp. 2638- 2655 ,(2013) , 10.1016/J.COMPELECENG.2013.04.020
Guang-Bin Huang, Dian Hui Wang, Yuan Lan, Extreme learning machines: a survey International Journal of Machine Learning and Cybernetics. ,vol. 2, pp. 107- 122 ,(2011) , 10.1007/S13042-011-0019-Y
M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, J. C. Tilton, Advances in Spectral-Spatial Classification of Hyperspectral Images Proceedings of the IEEE. ,vol. 101, pp. 652- 675 ,(2013) , 10.1109/JPROC.2012.2197589
Dora B. Heras, Francisco Argüello, Pablo Quesada-Barriuso, Exploring ELM-based spatial–spectral classification of hyperspectral images Journal of remote sensing. ,vol. 35, pp. 401- 423 ,(2014) , 10.1080/01431161.2013.869633