作者: Carlos Villaseñor , Nancy Arana-Daniel , Alma Y. Alanis , Carlos Lopez-Franco , Roberto Valencia-Murillo
DOI: 10.1007/978-3-030-34135-0_17
关键词: Ellipsoid 、 3D reconstruction 、 Mapping algorithm 、 Computer vision 、 Medical imaging 、 Rigid motion 、 Rendering (computer graphics) 、 Covariance 、 Partition problem 、 Computer science 、 Artificial intelligence
摘要: Visualizing physical phenomena is a central tool for nowadays research. In particular, volumetric representations are critical factor in the diagnosis of diseases and surgery planning. last years, rendering techniques have been essential medical practice, but these approaches suitable representing non-rigid motion tissue internal organs. present chapter, we introduce mapping algorithm capable track deformations on free-form objects. The proposed method uses k-means partition covariance ellipsoid, afterward Germinal Center Optimization used to adapt ellipsoid parameters. We offer experimental results over Stanford Repository tumors.