On a constant curvature statistical manifold

作者: Shimpei Kobayashi , Yu Ohno

DOI:

关键词: Constant curvatureAffine connectionMathematical physicsConjugateRicci curvatureStatistical manifoldAffine transformationNabla symbolMathematicsCurvature

摘要: We will show that a statistical manifold $(M, g, \nabla)$ has constant curvature if and only the dual affine connection $\nabla^*$ of $\nabla$ is projectively flat $R$ connections conjugate symmetric, is, $R=R^*$, where $R^*$ $\nabla^*$. Moreover, trace-free, then above condition symmetry can be replaced by Ricci $\textit{Ric}$ $\nabla$, $\textit{Ric} = \textit{Ric}^*$. Finally, we see more fundamental than for one-parameter family connections, so-called $\alpha$-connections.

参考文章(12)
luther Pfahler Eisenhart, Non-Riemannian geometry ,(2005)
Barbara Opozda, Bochner’s technique for statistical structures Annals of Global Analysis and Geometry. ,vol. 48, pp. 357- 395 ,(2015) , 10.1007/S10455-015-9475-Z
Josef Mikeš, Elena Stepanova, A five-dimensional Riemannian manifold with an irreducible SO(3)-structure as a model of abstract statistical manifold Annals of Global Analysis and Geometry. ,vol. 45, pp. 111- 128 ,(2014) , 10.1007/S10455-013-9390-0
Takashi Kurose, Dual connections and affine geometry Mathematische Zeitschrift. ,vol. 203, pp. 115- 121 ,(1990) , 10.1007/BF02570725
Neda Bokan, Katsumi Nomizu, Udo Simon, Affine hypersurfaces with parallel cubic forms Tohoku Mathematical Journal. ,vol. 42, pp. 101- 108 ,(1990) , 10.2748/TMJ/1178227697
Shoshichi KOBAYASHI (and NOMIZU (Katsumi)), Foundations of Differential Geometry ,(1963)
Takashi Kurose, ON THE DIVERGENCES OF 1-CONFORMALLY FLAT STATISTICAL MANIFOLDS Tohoku Mathematical Journal. ,vol. 46, pp. 427- 433 ,(1994) , 10.2748/TMJ/1178225722
Katsumi Nomizu, Affine differential geometry ,(1994)
Hitoshi Furuhata, Izumi Hasegawa, Submanifold Theory in Holomorphic Statistical Manifolds Springer Singapore. pp. 179- 215 ,(2016) , 10.1007/978-981-10-0916-7_7
Alexander Rylov, Constant Curvature Connections On Statistical Models Information Geometry and its Applications IV. pp. 349- 361 ,(2016) , 10.1007/978-3-319-97798-0_14