A New (2+1)-Dimensional Integrable Equation

作者: Ren Bo , Lin Ji

DOI: 10.1088/0253-6102/51/1/03

关键词: MathematicsInverse scattering transformIntegro-differential equationFirst-order partial differential equationPartial differential equationLax pairKadomtsev–Petviashvili equationBurgers' equationDifferential equationMathematical physics

摘要: A new nonlinear partial differential equation (PDE) in 2+1 dimensions is obtained from the mKP by means of an asymptotically exact reduction method based on Fourier expansion and spatio-temporal rescaling. In order to demonstrate integrability property equation, corresponding Lax pair applying technique equation.

参考文章(17)
Shu-fang Deng, Darboux transformations for the isospectral and nonisospectral mKP equation Physica A-statistical Mechanics and Its Applications. ,vol. 382, pp. 487- 493 ,(2007) , 10.1016/J.PHYSA.2007.04.009
F. Calogero, Ji Xiaoda, C‐integrable nonlinear partial differentiation equations. I Journal of Mathematical Physics. ,vol. 32, pp. 875- 887 ,(1991) , 10.1063/1.529346
Attilio Maccari, The investigation into new integrable systems of equations in 2+1-dimensions Journal of Mathematical Physics. ,vol. 44, pp. 242- 250 ,(2003) , 10.1063/1.1525405
Attilio Maccari, A class of integrable Davey–Stewartson type systems Journal of Mathematical Physics. ,vol. 42, pp. 2689- 2700 ,(2001) , 10.1063/1.1370396
F Calogero, W Eckhaus, Nonlinear evolution equations, rescalings, model PDEs and their integrability: II Inverse Problems. ,vol. 4, pp. 11- 33 ,(1987) , 10.1088/0266-5611/4/1/005
B.G. Konopelchenko, V.G. Dubrovsky, Some new integrable nonlinear evolution equations in 2 + 1 dimensions Physics Letters A. ,vol. 102, pp. 15- 17 ,(1984) , 10.1016/0375-9601(84)90442-0
Xianguo Geng, Yongtang Wu, Cewen Cao, Quasi-periodic solutions of the modified Kadomtsev-Petviashvili equation Journal of Physics A. ,vol. 32, pp. 3733- 3742 ,(1999) , 10.1088/0305-4470/32/20/306
F. Calogero, Ji Xiaoda, C‐integrable nonlinear PDEs. II Journal of Mathematical Physics. ,vol. 32, pp. 2703- 2717 ,(1991) , 10.1063/1.529112