A DiscontinuoushpFinite Element Method for Diffusion Problems

作者: J.Tinsley Oden , Ivo Babuŝka , Carlos Erik Baumann

DOI: 10.1006/JCPH.1998.6032

关键词: Boundary value problemSpectral element methodMixed finite element methodDiscontinuous Galerkin methodBoundary knot methodhp-FEMExtended finite element methodFinite element methodMathematicsMathematical analysis

摘要: We present an extension of the discontinuous Galerkin method which is applicable to numerical solution diffusion problems. The involves a weak imposition continuity conditions on values and fluxes across interelement boundaries. Within each element, arbitrary spectral approximations can be constructed with different orderspin element. demonstrate that elementwise conservative, property uncharacteristic high-order finite elements.For clarity, we focus model class linear second-order boundary value problems, developpriorierror estimates, convergence proofs, stability estimates. results experiments onh- andp-convergence rates for representative two-dimensional problems suggest robust capable delivering exponential convergence.

参考文章(32)
Bernardo Cockburn, Chi-Wang Shu, Claes Johnson, Eitan Tadmor, Bernardo Cockburn, An introduction to the Discontinuous Galerkin method for convection-dominated problems Lecture Notes in Mathematics. pp. 150- 268 ,(1998) , 10.1007/BFB0096353
Steven R. Allmaras, A coupled euler/navier-stokes algorithm for 2-D unsteady transonic shock/boundary-layer interaction Massachusetts Institute of Technology. ,(1989)
I. Babuška, J.T. Oden, J.K. Lee, Mixed-hybrid finite element approximations of second-order elliptic boundary value problems. Part 2 - weak-hybrid methods Computer Methods in Applied Mechanics and Engineering. ,vol. 14, pp. 1- 22 ,(1978) , 10.1016/0045-7825(78)90010-5
Kim S. Bey, J. Tinsley Oden, hp-Version discontinuous Galerkin methods for hyperbolic conservation laws Computer Methods in Applied Mechanics and Engineering. ,vol. 133, pp. 259- 286 ,(1996) , 10.1016/0045-7825(95)00944-2
J.A Hendry, L.M Delves, The global element method applied to a harmonic mixed boundary value problem Journal of Computational Physics. ,vol. 33, pp. 33- 44 ,(1979) , 10.1016/0021-9991(79)90026-3
Bernardo Cockburn, San-Yih Lin, Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems Journal of Computational Physics. ,vol. 84, pp. 90- 113 ,(1989) , 10.1016/0021-9991(89)90183-6
Peter Percell, Mary Fanett Wheeler, A Local Residual Finite Element Procedure for Elliptic Equations SIAM Journal on Numerical Analysis. ,vol. 15, pp. 705- 714 ,(1978) , 10.1137/0715047
P. Lesaint, P.-A. Raviart, Finite element collocation methods for first-order systems Mathematics of Computation. ,vol. 33, pp. 891- 918 ,(1979) , 10.1090/S0025-5718-1979-0528046-0