Subelliptic estimates for the 8-Neumann problem on pseudoconvex domains

作者: David Catlin

DOI:

关键词: Neumann boundary conditionPseudoconvexityPure mathematicsBoundary valuesBounded functionHermitian manifoldDomain (mathematical analysis)Boundary value problemMathematicsMathematical optimization

摘要: Let 2 be a smoothly bounded domain in C' with varying Hermitian metric and let f a-closed (p, q)-form on U2. The d-Neumann problem is non-elliptic boundary value problemthat arises when one tries to find q 1)-form u that solves the equation du = orthogonal null space of d 1)-forms. As pointed out by Kohn [11], above can reduced rU= (a?#+ d)U=f

参考文章(7)
Hassler Whitney, Complex Analytic Varieties ,(1972)
Gerald B. Folland, Joseph John Kohn, The Neumann problem for the Cauchy-Riemann complex ,(1972)
David Catlin, Boundary behavior of holomorphic functions on pseudoconvex domains Journal of Differential Geometry. ,vol. 15, pp. 605- 625 ,(1980) , 10.4310/JDG/1214435847
J. J. Kohn, L. Nirenberg, Non-coercive boundary value problems Communications on Pure and Applied Mathematics. ,vol. 18, pp. 443- 492 ,(1965) , 10.1002/CPA.3160180305
Lars Hörmander, L2 estimates and existence theorems for the $\bar \partial $ operator Acta Mathematica. ,vol. 113, pp. 89- 152 ,(1965) , 10.1007/BF02391775
Klas Diederich, John E. Fornaess, Pseudoconvex Domains with Real-Analytic Boundary Annals of Mathematics. ,vol. 107, pp. 371- ,(1978) , 10.2307/1971120
John P. D'Angelo, Real Hypersurfaces, Orders of Contact, and Applications The Annals of Mathematics. ,vol. 115, pp. 615- 637 ,(1982) , 10.2307/2007015