作者: Mirek Kárný , Kevin Warwick , Vera Kůrková
DOI: 10.1007/978-1-4471-1523-6_17
关键词: Computability 、 Recursively enumerable language 、 Halting problem 、 Computer science 、 Context (language use) 、 Algebra 、 Undecidable problem 、 Computable function 、 Turing machine 、 Turing
摘要: It is known that each algorithm Turing solvable. In the context of function computability, Church-Turing thesis states intuitively computable computable. The languages accepted by machines form recursively enumerable language family L 0 and, according to thesis, also class algorithmic sets. spite its generality, model can not solve any problem. Recall, for example, halting problem unsolvable: it undecidable if an arbitrary machine will eventually halt when given some specified, but arbitrary, input.