作者: Jooseop Yun , Jun Miura
DOI: 10.1109/ROBOT.2007.364018
关键词: Monte Carlo localization 、 Mobile robot 、 Stereopsis 、 Kalman filter 、 Odometry 、 Mobile robot navigation 、 Image segmentation 、 Object detection 、 Robot 、 Feature extraction 、 Computer vision 、 Artificial intelligence 、 Computer science 、 Gaussian
摘要: We describe a method of mobile robot localization based on rough map using stereo vision, which uses multiple visual features to detect and segment the buildings in robot's field view. The is an inaccurate with large uncertainties shapes, dimensions locations objects so that it can be built easily. fuses odometry vision information extended Kalman filters update pose associated uncertainty recognition map. use multi-hypothesis filter generate track Gaussian hypotheses. An experimental result shows feasibility our outdoor environment.