Geometric Ramifications of the Lovász Theta Function and Their Interplay with Duality

作者: Marcel Kenji , de Carli Silva

DOI:

关键词: Theta functionCombinatoricsPolyhedral combinatoricsDuality (mathematics)Convex analysisOrthonormal basisIndependent setMathematicsConvex setCovering number

摘要: The Lovasz theta function and the associated convex sets known as theta bodies are fundamental objects in combinatorial and semidefinite optimization. They are accompanied …

参考文章(129)
A. Galtman, Spectral Characterizations of the Lovász Number and the Delsarte Number of a Graph Journal of Algebraic Combinatorics. ,vol. 12, pp. 131- 143 ,(2000) , 10.1023/A:1026587926110
H. C. Rumsey, R. J. Mceliece, E. R. Rodemich, The Lovasz bound and some generalizations ,(1978)
Casimir Kuratowski, Sur le problème des courbes gauches en Topologie Fundamenta Mathematicae. ,vol. 15, pp. 271- 283 ,(1930) , 10.4064/FM-15-1-271-283
László Lovász, Alexander Schrijver, A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs Proceedings of the American Mathematical Society. ,vol. 126, pp. 1275- 1285 ,(1998) , 10.1090/S0002-9939-98-04244-0
Norman Biggs, Algebraic Graph Theory Cambridge University Press. ,(1974) , 10.1017/CBO9780511608704
László Lovász, Geometric representations of graphs ,(2014)
Donald E. Knuth, The Sandwich Theorem Electronic Journal of Combinatorics. ,vol. 1, pp. 1- ,(1994) , 10.37236/1193
Geňa Hahn, Claude Tardif, Graph homomorphisms: structure and symmetry Springer, Dordrecht. pp. 107- 166 ,(1997) , 10.1007/978-94-015-8937-6_4