Local Log-Euclidean Covariance Matrix (L2ECM) for Image Representation and Its Applications

作者: Peihua Li , Qilong Wang

DOI: 10.1007/978-3-642-33712-3_34

关键词: Covariance matrixComputer visionStructure tensorImage momentCovarianceEuclidean spaceMathematicsFeature detection (computer vision)AlgorithmSymmetric matrixU-matrixArtificial intelligence

摘要: This paper presents Local Log-Euclidean Covariance Matrix (L2ECM) to represent neighboring image properties by capturing correlation of various cues. Our work is inspired the structure tensor which computes second-order moment gradients for representing local properties, and Diffusion Tensor Imaging produces tensor-valued characterizing tissue structure. approach begins with extraction raw features consisting multiple For each pixel we compute a covariance matrix in its region, producing image. The matrices are symmetric positive-definite (SPD) forms Riemannian manifold. In framework, SPD form Lie group equipped Euclidean space structure, enables common operations logarithm domain. Hence, logarithm, obtaining pixel-wise matrix. After half-vectorization obtain vector-valued L2ECM image, can be flexibly handled while preserving geometric matrices. used diverse or vision tasks. We demonstrate some applications statistical modeling simple central achieve promising performance.

参考文章(38)
Ravishankar Sivalingam, Daniel Boley, Vassilios Morellas, Nikolaos Papanikolopoulos, Tensor Sparse Coding for Region Covariances Computer Vision – ECCV 2010. pp. 722- 735 ,(2010) , 10.1007/978-3-642-15561-1_52
Hans Knutsson, Carl-Fredrik Westin, Mats Andersson, Representing local structure using tensors II scandinavian conference on image analysis. pp. 545- 556 ,(2011) , 10.1007/978-3-642-21227-7_51
Anna Bosch, Andrew Zisserman, Xavier Muñoz, Scene Classification Via pLSA Computer Vision – ECCV 2006. pp. 517- 530 ,(2006) , 10.1007/11744085_40
Vincent Arsigny, Pierre Fillard, Xavier Pennec, Nicholas Ayache, Fast and simple calculus on tensors in the log-euclidean framework medical image computing and computer assisted intervention. ,vol. 8, pp. 115- 122 ,(2005) , 10.1007/11566465_15
David Ross, Jongwoo Lim, Ming-Hsuan Yang, Adaptive probabilistic visual tracking with incremental subspace update european conference on computer vision. pp. 470- 482 ,(2004) , 10.1007/978-3-540-24671-8_37
P. Thomas Fletcher, Sarang Joshi, Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors Lecture Notes in Computer Science. ,vol. 3117, pp. 87- 98 ,(2004) , 10.1007/978-3-540-27816-0_8
K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, L. Van Gool, A Comparison of Affine Region Detectors International Journal of Computer Vision. ,vol. 65, pp. 43- 72 ,(2005) , 10.1007/S11263-005-3848-X
Xavier Pennec, Pierre Fillard, Nicholas Ayache, A Riemannian Framework for Tensor Computing International Journal of Computer Vision. ,vol. 66, pp. 41- 66 ,(2006) , 10.1007/S11263-005-3222-Z
Vincent Arsigny, Pierre Fillard, Xavier Pennec, Nicholas Ayache, GEOMETRIC MEANS IN A NOVEL VECTOR SPACE STRUCTURE ON SYMMETRIC POSITIVE-DEFINITE MATRICES SIAM Journal on Matrix Analysis and Applications. ,vol. 29, pp. 328- 347 ,(2007) , 10.1137/050637996
Hideki Nakayama, Tatsuya Harada, Yasuo Kuniyoshi, Global Gaussian approach for scene categorization using information geometry computer vision and pattern recognition. pp. 2336- 2343 ,(2010) , 10.1109/CVPR.2010.5539921