Real Lax spectrum implies spectral stability

作者: Jeremy Upsal , Bernard Deconinck

DOI: 10.1111/SAPM.12335

关键词: Spectrum (functional analysis)MathematicsFloquet theoryEigenvalues and eigenvectorsReal lineEigenfunctionStability (probability)Stability spectrumPure mathematicsDynamical systems theory

摘要: We consider the dynamical stability of periodic solutions integrable equations with 2x2 Lax pairs. construct eigenfunctions and hence Floquet discriminant for such The boundedness determines spectrum. use a connection between spectrum to show that subset real line which gives rise stable eigenvalues is contained in This full self-adjoint members AKNS hierarchy. For non-self-adjoint hierarchy admitting common reduction, always part maps problem. demonstrate our methods work variety examples.

参考文章(36)
Nicholas M. Ercolani, David W. McLaughlin, Toward a Topological Classification of Integrable PDE’s Mathematical Sciences Research Institute Publications. pp. 111- 129 ,(1991) , 10.1007/978-1-4613-9725-0_9
Avinash Khare, Avadh Saxena, Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations Journal of Mathematical Physics. ,vol. 56, pp. 032104- ,(2015) , 10.1063/1.4914335
B. Deconinck, M Nivala, The Stability Analysis of the Periodic Traveling Wave Solutions of the mKdV Equation Studies in Applied Mathematics. ,vol. 126, pp. 17- 48 ,(2011) , 10.1111/J.1467-9590.2010.00496.X
Mark J. Ablowitz, David J. Kaup, Alan C. Newell, Harvey Segur, The Inverse scattering transform fourier analysis for nonlinear problems Studies in Applied Mathematics. ,vol. 53, pp. 249- 315 ,(1974) , 10.1002/SAPM1974534249
A. B. Shabat, V. E. Zakharov, Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media Journal of Experimental and Theoretical Physics. ,vol. 34, pp. 62- 69 ,(1970)
Bernard Deconinck, J. Nathan Kutz, Computing spectra of linear operators using the Floquet-Fourier-Hill method Journal of Computational Physics. ,vol. 219, pp. 296- 321 ,(2006) , 10.1016/J.JCP.2006.03.020
Françoise Tisseur, Karl Meerbergen, The Quadratic Eigenvalue Problem SIAM Review. ,vol. 43, pp. 235- 286 ,(2001) , 10.1137/S0036144500381988
Nate Bottman, , Bernard Deconinck, , KdV cnoidal waves are spectrally stable Discrete and Continuous Dynamical Systems. ,vol. 25, pp. 1163- 1180 ,(2009) , 10.3934/DCDS.2009.25.1163
Michael Nivala, Bernard Deconinck, Periodic finite-genus solutions of the KdV equation are orbitally stable Physica D: Nonlinear Phenomena. ,vol. 239, pp. 1147- 1158 ,(2010) , 10.1016/J.PHYSD.2010.03.005
Christopher K.R.T. Jones, Robert Marangell, Peter D. Miller, Ramón G. Plaza, On the stability analysis of periodic sine-Gordon traveling waves Physica D: Nonlinear Phenomena. ,vol. 251, pp. 63- 74 ,(2013) , 10.1016/J.PHYSD.2013.02.003