On the achievable accuracy of structural system parameter estimates

作者: W. Gersch

DOI: 10.1016/S0022-460X(74)80355-X

关键词: Differential equationNoise (electronics)Mathematical analysisEstimation theoryUpper and lower boundsCovariance matrixMathematicsStatisticsFisher informationStandard deviationNatural frequency

摘要: Procedures to compute the statistical accuracy achievable in estimating natural frequency and damping parameters of randomly excited structural systems are demonstrated. Particular worked examples yield quantitative qualitative results. A regularly sampled stationary n degree-of-freedom differential equation model corresponding mixed autoregressive-moving average (AR-MA) time series order 2n that is known represent sample sequence assumed. The elements Fisher information matrix, second partial derivatives log-likelihood functional maximum likelihood estimates AR-MA parameters, computed from those parameters. matrix inverse asymptotically Cramer-Rao lower bound on covariance errors parameter estimates, result can be expressed terms AR results assumed system. It demonstrated cf cξ, respectively coefficient variation (the ratio standard deviation mean) 0·01 0·2 for N=1000 vibration observations theoretically values cξ have following properties: (a) inversely proportional N ; (b) essentially identical displacement velocity acceleration data taken at same observation point; (c) quite insensitive presence additive noise when estimation procedure used; (d) independent intensity correlation structure random excitation; (e) Ts, sampling interval; (f) a fixed any particular mode system, number modes system; (g) varies directly with an increase ξ.

参考文章(7)
P. Whittle, Estimation and information in stationary time series Arkiv för Matematik. ,vol. 2, pp. 423- 434 ,(1953) , 10.1007/BF02590998
Siong Siu Tan Luo, Discrete Time Series Synthesis of Randomly Excited Structural System Response The Journal of the Acoustical Society of America. ,vol. 51, pp. 402- 408 ,(1972) , 10.1121/1.1912850
W. Gersch, N.N. Nielsen, H. Akaike, Maximum likelihood estimation of structural parameters from random vibration data Journal of Sound and Vibration. ,vol. 31, pp. 295- 308 ,(1973) , 10.1016/S0022-460X(73)80274-3
George Edward Pelham Box, Gwilym M. Jenkins, Time series analysis, forecasting and control ,(1970)
Karl Johan Åström, On the Achievable Accuracy in Identification Problems Proc. IFAC Congress on Identification in Automatic Control Systems; (1967). pp. 1- 8 ,(1967)
Torsten Bohlin, Karl Johan Åström, Sture Wensmark, Automatic Construction of Linear Stochastic Dynamic Models For Stationary Industrial Processes with Random Disturbances Using Operating Records IBM Technical Paper TP; (18:150) (1965). ,(1965)