Turbulent combustion in open and closed vessels

作者: James Sethian

DOI: 10.1016/0021-9991(84)90126-8

关键词: Flow (psychology)Pipe flowFluid dynamicsMechanicsPhysicsCombustionTurbulenceVortexReynolds numberEddyClassical mechanics

摘要: We present a numerical technique to approximate the solution of simplified model turbulent combustion. The method, which is particularly suited for flows at high Reynolds number, uses random vortex element techniques coupled flame propagation algorithm based on Huyghens' principle. use this analyze combustion in open and closed vessels. In first experiment, we propagating swirling, viscous flow inside square. Our results show growth development counterrotating eddies their effect flame. second within channel, enters through slit one end. Results detail effects exothermicity viscosity speed shape burning front.

参考文章(18)
K. N. C. Bray, Turbulent flows with premixed reactants Turbulent Reacting Flows. ,vol. 44, pp. 115- 183 ,(1980) , 10.1007/3540101926_10
W. C. Reynolds, T. Cebeci, Calculation of Turbulent Flows Turbulence. ,vol. 12, pp. 193- 229 ,(1975) , 10.1007/3540088644_12
Hermann Schlichting, Boundary layer theory ,(1955)
Alexandre Joel Chorin, Numerical study of slightly viscous flow Journal of Fluid Mechanics. ,vol. 57, pp. 785- 796 ,(1973) , 10.1017/S0022112073002016
Numerical modelling of turbulent flow in a combustion tunnel Philosophical Transactions of the Royal Society A. ,vol. 304, pp. 303- 325 ,(1982) , 10.1098/RSTA.1982.0014
A Leonard, Vortex methods for flow simulation Journal of Computational Physics. ,vol. 37, pp. 289- 335 ,(1980) , 10.1016/0021-9991(80)90040-6
Aleksei T Shestakov, A hybrid vortex-ADI solution for flows of low viscosity Journal of Computational Physics. ,vol. 31, pp. 313- 334 ,(1979) , 10.1016/0021-9991(79)90050-0
Alexandre Joel Chorin, Vortex sheet approximation of boundary layers Journal of Computational Physics. ,vol. 27, pp. 428- 442 ,(1978) , 10.1016/0021-9991(78)90019-0
J. Thomas Beale, Andrew Majda, Vortex methods. I. Convergence in three dimensions Mathematics of Computation. ,vol. 39, pp. 1- 27 ,(1982) , 10.1090/S0025-5718-1982-0658212-5