Weak Approximation of a Nonlinear Stochastic Partial Differential Equation

作者: Ralf Manthey

DOI: 10.1007/978-3-0348-6413-8_11

关键词: ParametrixElliptic partial differential equationCombinatoricsGaussian random fieldWeak convergenceMathematical analysisFirst-order partial differential equationPhysicsWeak solutionRandom elementHeat equation

摘要: Consider the following formal initial-boundary value problem $$[tex]\left\{ {\begin{array}{*{20}{c}}{\frac{\partial }{{\partial t}}u(t,x) = \frac{{{\partial ^2}}}{{\partial {x^2}}}u(t,x) + f(u(t,x)) \sigma \zeta (t,x),{\kern 1pt} \quad t > 0,x \in (0,1),} \\{u(0,x) {u_0}(x),\quad x [0,1]} \\{u(t,0) u(t,1) 0,\quad \ge 0,} \\\end{array}} \right.[/tex]$$ (D) which was investigated by many authors from quite different viewpoints (cf.[1],[3],[6]-[10]). Let (Ω𝔉,ℙ) denote basic complete probability space and suppose that u0:Ω×[0,1] → ℝ is pathwise continuous. If ξ a space-time GAUSSian white noise, i.e. centered 𝔇 (ℝ+ ×[0,1])-valued random element with covariance functional $$[tex]E\zeta (\varphi )\zeta (\psi ) \int_{{_ }} {\int_0^1 {\varphi (t,x)\psi (t,x)dxdt,} } [/tex]$$ then (D) represents only symbol (𝔇′ denotes of SCHWARTZ distributions.). Indeed, in considered case one-dimensional parameter x∈[0, 1] it possible to give precise mathematical meaning as follows. W BROWNian sheet, continuous field defined on (math) function $$[tex]EW(t,x)W(s,y) (t \wedge s)(x y).[/tex]$$

参考文章(10)
G. Da Prato, J. Zabczyk, A note on semilinear stochastic equations Differential and Integral Equations. ,vol. 1, pp. 143- 155 ,(1988)
Tadahisa Funaki, Random motion of strings and related stochastic evolution equations Nagoya Mathematical Journal. ,vol. 89, pp. 129- 193 ,(1983) , 10.1017/S0027763000020298
René Carmona, Harry Kesten, John B Walsh, John B Walsh, An introduction to stochastic partial differential equations Lecture Notes in Mathematics. pp. 265- 439 ,(1986) , 10.1007/BFB0074920
Ralf Manthey, Weak Convergence of Solutions of the Heat Equation with Gaussian Noise Mathematische Nachrichten. ,vol. 123, pp. 157- 168 ,(1985) , 10.1002/MANA.19851230115
John B. Walsh, A STOCHASTIC MODEL OF NEURAL RESPONSE Advances in Applied Probability. ,vol. 13, pp. 231- 281 ,(1981) , 10.1017/S0001867800036004
W G Faris, G Jona-Lasinio, Large fluctuations for a nonlinear heat equation with noise Journal of Physics A. ,vol. 15, pp. 3025- 3055 ,(1982) , 10.1088/0305-4470/15/10/011
Koichiro Iwata, An infinite dimensional stochastic differential equation with state spaceC(ℝ) Probability Theory and Related Fields. ,vol. 74, pp. 141- 159 ,(1987) , 10.1007/BF01845644
D.A Dawson, Stochastic evolution equations and related measure processes Journal of Multivariate Analysis. ,vol. 5, pp. 1- 52 ,(1975) , 10.1016/0047-259X(75)90054-8
Ralf Manthey, Bohdan Maslowski, Qualitative behaviour of solutions of stochastic reaction-diffusion equations Stochastic Processes and their Applications. ,vol. 43, pp. 265- 289 ,(1992) , 10.1016/0304-4149(92)90062-U
Ralf Manthey, On the Cauchy Problem for Reaction‐Diffusion Equations with White Noise Mathematische Nachrichten. ,vol. 136, pp. 209- 228 ,(1988) , 10.1002/MANA.19881360114