Anti-plane States in an Anisotropic Elastic Body Containing an Elliptical Hole

作者: Eduard-Marius Craciun , Eugen Soós

DOI: 10.1177/1081286505044138

关键词: MathematicsBoundary value problemAnisotropyComplex representationRiemann problemConformal mapShear (geology)Mathematical analysisRiemann–Hilbert problem

摘要: One considers an unbounded, anisotropic elastic body containing elliptical hole free from external loads but loaded by shear stresses far the hole. The anti-plane equilibrium of is determined using complex representation states and conformal mapping technique. solution obtained in compact, elementary form. verifies direct calculus that satisfies all boundary conditions. When smaller semiaxis tends to zero; i.e. becomes classical Griffith-Irwin crack; potential for elliptic case then crack problem solving corresponding Riemann-Hilbert problem.

参考文章(2)
E. Baesu, D. Fortune, E. Soós, Incremental behaviour of hyperelastic dielectrics and piezoelectric crystals Zeitschrift für Angewandte Mathematik und Physik. ,vol. 54, pp. 160- 178 ,(2003) , 10.1007/PL00012630
Eveline Baesu, Eugen Soós, Antiplane fracture in a prestressed and prepolarized piezoelectric crystal Ima Journal of Applied Mathematics. ,vol. 66, pp. 499- 508 ,(2001) , 10.1093/IMAMAT/66.5.499