The general setting for Shape Analysis

作者: Sylvain Arguillère

DOI:

关键词: Mathematical analysisInfinitesimalAbstract spaceShape spaceHeat kernel signatureMathematicsShape analysis (digital geometry)Equivariant mapGeodesic flowPure mathematics

摘要: In shape analysis, the concept of spaces has always been vague, requiring a case-by-case approach for every new type shape. this paper, we give general definition an abstract space shapes in manifold. This notion encompasses studied so far literature, and offers rigorous framework several possible generalizations. We then appropriate setting LDDMM methods which arises naturally as sub-Riemannian structure on space. is deduced from infinitesimal deformations their action. describe properties Hamiltonian geodesic flow, study applications equivariant mappings between spaces.

参考文章(50)
Rudolf Schmid, Infinite Dimentional Lie Groups with Applications to Mathematical Physics Journal of Geometry and Symmetry in Physics. ,vol. 1, pp. 54- 120 ,(2004) , 10.7546/JGSP-1-2004-54-120
A. Trouve, Action de groupe de dimension infinie et reconnaissance de formes Comptes rendus de l'Académie des sciences. Série 1, Mathématique. ,vol. 321, pp. 1031- 1034 ,(1995)
Laurent Younes, Shapes and Diffeomorphisms ,(2010)
Ulf Grenander, Michael I. Miller, Computational anatomy: an emerging discipline Quarterly of Applied Mathematics. ,vol. 56, pp. 617- 694 ,(1998) , 10.1090/QAM/1668732
Y. Chitour, F. Jean, E. Trélat, Genericity results for singular curves Journal of Differential Geometry. ,vol. 73, pp. 45- 73 ,(2006) , 10.4310/JDG/1146680512
Jerrold E. Marsden, Tudor S. Ratiu, Introduction to mechanics and symmetry Springer-Verlag. ,(1994) , 10.1007/978-0-387-21792-5
Nicolas Charon, Alain Trouvé, The varifold representation of non-oriented shapes for diffeomorphic registration arXiv: Computational Geometry. ,(2013) , 10.1137/130918885
L. Rifford, E. Tr�lat, Morse-Sard type results in sub-Riemannian geometry Mathematische Annalen. ,vol. 332, pp. 145- 159 ,(2005) , 10.1007/S00208-004-0622-2