Granular Nested Causal Complexes.

作者: Lawrence J. Mazlack

DOI:

关键词: MathematicsCausal Markov conditionMachine learningArtificial intelligenceCausal model

摘要:

参考文章(25)
Herbert A. Simon, Causal Ordering and Identifiability Springer, Dordrecht. pp. 53- 80 ,(1977) , 10.1007/978-94-010-9521-1_5
A. P. Dawid, Who needs counterfactuals In: Gammerman, A, (ed.) Causal Models and Intelligent Data Management. (pp. 33-50). Springer-Verlag (1999). pp. 33- 50 ,(1999) , 10.1007/978-3-642-58648-4_3
Lawrence J. Mazlack, Commonsense Causal Modeling in the Data Mining Context. Foundations and Novel Approaches in Data Mining. pp. 1- 22 ,(2006)
Craig Silverstein, Sergey Brin, Rajeev Motwani, Beyond Market Baskets: Generalizing Association Rules to Dependence Rules Data Mining and Knowledge Discovery. ,vol. 2, pp. 39- 68 ,(1998) , 10.1023/A:1009713703947
Clark N. Glymour, Peter Spirtes, Richard Scheines, Causation, prediction, and search ,(1993)
Lofti Zadeh, From computing with numbers to computing with words. From manipulation of measurements to manipulation of perceptions IEEE Transactions on Circuits and Systems I-regular Papers. ,vol. 46, pp. 105- 119 ,(1999) , 10.1007/1-4020-3167-X_23
Herbert A. Simon, Nonmonotonic reasoning and causation: Comment Cognitive Science. ,vol. 15, pp. 293- 300 ,(1991) , 10.1207/S15516709COG1502_5
Charles L. Ortiz, A commonsense language for reasoning about causation and rational action Artificial Intelligence. ,vol. 111, pp. 73- 130 ,(1999) , 10.1016/S0004-3702(99)00041-7
Charles L. Ortiz Jr., Explanatory update theory: Applications of counterfactual reasoning to causation Artificial Intelligence. ,vol. 108, pp. 125- 178 ,(1999) , 10.1016/S0004-3702(99)00004-1