On Petri's Analysis of the Linear System of Quadrics through a Canonical Curve.

作者: B. Saint-Donat

DOI: 10.1007/BF01430982

关键词: Kernel (algebra)Linear systemSymmetric algebraCombinatoricsQuintic functionSurjective functionDegree (graph theory)MathematicsPlane (geometry)Trigonal crystal system

摘要: where S*H°(I2) denote the symmetric algebra of H°(f2), is surjective. (2) The kernel I ~p generated by its elements degree 2 and 3. (3) except in following cases: (i) C a non-singular plane quintic (g= 6) (ii) trigonal (i.e., triple covering PI). (We refer reader to (4.11), (4.12) (4.13) for special study those exceptions).

参考文章(6)
A. L. Mayer, A. Andreotti, On period relations for abelian integrals on algebraic curves Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 21, pp. 189- 238 ,(1967)
V V Šokurov, The Noether-Enriques Theorem on Canonical Curves Mathematics of The Ussr-sbornik. ,vol. 15, pp. 361- 403 ,(1971) , 10.1070/SM1971V015N03ABEH001552
K. Petri, Über die invariante Darstellung algebraischer Funktionen einer Veränderlichen Mathematische Annalen. ,vol. 88, pp. 242- 289 ,(1923) , 10.1007/BF01579181
Arturo Maroni, Le serie lineari speciali sulle curve trigonali Annali di Matematica Pura ed Applicata. ,vol. 25, pp. 341- 354 ,(1946) , 10.1007/BF02418090
George Kempf, On the Geometry of a Theorem of Riemann The Annals of Mathematics. ,vol. 98, pp. 178- ,(1973) , 10.2307/1970910
Henrik H. Martens, On the varieties of special divisors on a curve. Crelle's Journal. ,vol. 227, pp. 111- 120 ,(1967)