Rapid evolution drives the rise and fall of carbapenem resistance during an acute Pseudomonas aeruginosa infection

作者: Rachel Wheatley , Julio Diaz Caballero , Natalia Kapel , Angus Quinn , Ester del Barrio-Tofiño

DOI: 10.1101/2020.08.10.243741

关键词: AntibioticsColistinPathogenic bacteriaMeropenemBiologyEffluxPathogenMicrobiologyPseudomonas aeruginosaPopulation

摘要: Abstract It is well established that antibiotic treatment selects for resistance in pathogenic bacteria. However, the evolutionary responses of pathogen populations to during infections remain poorly resolved, especially acute infections. Here we map high definition through genomic and phenotypic characterization >100 isolates from a patient with P. aeruginosa pneumonia. Antibiotic therapy (meropenem, colistin) caused rapid crash population lung, but this decline was followed by spread meropenem mutations restrict uptake (oprD) or modify LPS biosynthesis (wbpM). Low fitness strains high-level were then replaced ‘anti-resistance’ MexAB-OprM efflux pump, causing both collateral loss broad spectrum antibiotics. In contrast, did not observe any intestinal aeruginosa. Carbapenem antibiotics are key Gram negative pathogens, our work highlights ability natural selection drive rise fall carbapenem

参考文章(70)
Deana M Sabuda, Kevin Laupland, Johann Pitout, Bruce Dalton, Harvey Rabin, Thomas Louie, John Conly, Utilization of Colistin for Treatment of Multidrug-Resistant Pseudomonas aeruginosa Canadian Journal of Infectious Diseases & Medical Microbiology. ,vol. 19, pp. 413- 418 ,(2008) , 10.1155/2008/743197
Larry H. Danziger, Stephen C. Piscitelli, Douglas N. Fish, Development of Resistance During Antimicrobial Therapy: A Review of Antibiotic Classes and Patient Characteristics in 173 Studies Pharmacotherapy. ,vol. 15, pp. 279- 291 ,(1995) , 10.1002/J.1875-9114.1995.TB04366.X
E. E. Smith, D. G. Buckley, Z. Wu, C. Saenphimmachak, L. R. Hoffman, D. A. D'Argenio, S. I. Miller, B. W. Ramsey, D. P. Speert, S. M. Moskowitz, J. L. Burns, R. Kaul, M. V. Olson, Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 103, pp. 8487- 8492 ,(2006) , 10.1073/PNAS.0602138103
Elena B.M. Breidenstein, César de la Fuente-Núñez, Robert E.W. Hancock, Pseudomonas aeruginosa: all roads lead to resistance Trends in Microbiology. ,vol. 19, pp. 419- 426 ,(2011) , 10.1016/J.TIM.2011.04.005
Cheol‐In Kang, Sung‐Han Kim, Hong‐Bin Kim, Sang‐Won Park, Young‐Ju Choe, Myoung‐don Oh, Eui‐Chong Kim, Kang‐Won Choe, Pseudomonas aeruginosa Bacteremia: Risk Factors for Mortality and Influence of Delayed Receipt of Effective Antimicrobial Therapy on Clinical Outcome Clinical Infectious Diseases. ,vol. 37, pp. 745- 751 ,(2003) , 10.1086/377200
Stephanie J. Schrag, Véronique Perrot, Reducing antibiotic resistance Nature. ,vol. 381, pp. 120- 121 ,(1996) , 10.1038/381120B0
C. Peña, C. Suarez, F. Tubau, A. Dominguez, M. Sora, M. Pujol, F. Gudiol, J. Ariza, Carbapenem-resistant Pseudomonas aeruginosa: factors influencing multidrug-resistant acquisition in non-critically ill patients European Journal of Clinical Microbiology & Infectious Diseases. ,vol. 28, pp. 519- 522 ,(2009) , 10.1007/S10096-008-0645-9
Viktória Lázár, István Nagy, Réka Spohn, Bálint Csörgő, Ádám Györkei, Ákos Nyerges, Balázs Horváth, Andrea Vörös, Róbert Busa-Fekete, Mónika Hrtyan, Balázs Bogos, Orsolya Méhi, Gergely Fekete, Balázs Szappanos, Balázs Kégl, Balázs Papp, Csaba Pál, Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network Nature Communications. ,vol. 5, pp. 4352- 4352 ,(2014) , 10.1038/NCOMMS5352
A. San Millan, R. Peña-Miller, M. Toll-Riera, Z. V. Halbert, A. R. McLean, B. S. Cooper, R. C. MacLean, Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids Nature Communications. ,vol. 5, pp. 5208- 5208 ,(2014) , 10.1038/NCOMMS6208
Brian G Bell, Francois Schellevis, Ellen Stobberingh, Herman Goossens, Mike Pringle, A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance BMC Infectious Diseases. ,vol. 14, pp. 13- 13 ,(2014) , 10.1186/1471-2334-14-13