Interactions of alpha-helices with lipid bilayers: a review of simulation studies

作者: Phil C Biggin , Mark S.P Sansom

DOI: 10.1016/S0301-4622(98)00233-6

关键词: Alpha helixPeripheral membrane proteinBiophysicsCrystallographyChemistryTransmembrane domainHelixMembrane proteinDermaseptinLipid bilayerIntegral membrane protein

摘要: Membrane proteins, of which the majority seem to contain one or more alpha-helix, constitute approx. 30% most genomes. A complete understanding nature helix/bilayer interactions is necessary for an structural principles underlying membrane proteins. This review describes computer simulation studies interactions. Key experimental alpha-helices and lipid bilayers are briefly reviewed. Surface associated helices found in some membrane-bound enzymes (e.g. prostaglandin synthase), as stages mechanisms antimicrobial peptides pore-forming bacterial toxins. Transmembrane integral also channels formed by amphipathic Mean field simulations, bilayer approximated a hydrophobic continuum, have been used membrane-active alamethicin, melittin, magainin dermaseptin) simple proteins phage Pf1 coat protein). All atom molecular dynamics simulations fully solvated with transmembrane applied to: constituent bacteriorhodopsin; peptide-16 (a model TM helix); number pore-lining from ion channels. melittin simulated, alpha-helical bundles such bacteriorhodopsin alamethicin. From comparison results two classes simulation, it emerges that major theoretical challenge exploit all order improve mean approach.

参考文章(139)
Benoît Roux, Kenneth M. Merz, Biological membranes : a molecular perspective from computation and experiment Birkhäuser Boston. ,(1996)
G.M. Preston, J.S. Jung, W.B. Guggino, P. Agre, Membrane topology of aquaporin CHIP. Analysis of functional epitope-scanning mutants by vectorial proteolysis Journal of Biological Chemistry. ,vol. 269, pp. 1668- 1673 ,(1994) , 10.1016/S0021-9258(17)42079-5
M J Liao, K S Huang, H G Khorana, Regeneration of native bacteriorhodopsin structure from fragments. Journal of Biological Chemistry. ,vol. 259, pp. 4200- 4204 ,(1984) , 10.1016/S0021-9258(17)43030-4
Burkhard Rost, Piero Fariselli, Rita Casadio, Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Science. ,vol. 5, pp. 1704- 1718 ,(1996) , 10.1002/PRO.5560050824
K.S. Huang, H. Bayley, M.J. Liao, E. London, H.G. Khorana, Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. Journal of Biological Chemistry. ,vol. 256, pp. 3802- 3809 ,(1981) , 10.1016/S0021-9258(19)69526-8
Fritz Jähnig, Olle Edholm, Modeling of the structure of bacteriorhodopsin: A molecular dynamics study☆ Journal of Molecular Biology. ,vol. 226, pp. 837- 850 ,(1992) , 10.1016/0022-2836(92)90635-W
Jane S. Richardson, David C. Richardson, Principles and Patterns of Protein Conformation Prediction of Protein Structure and the Principles of Protein Conformation. pp. 1- 98 ,(1989) , 10.1007/978-1-4613-1571-1_1
Anchi Cheng, A. N. van Hoek, M. Yeager, A. S. Verkman, A. K. Mitra, Three-dimensional organization of a human water channel Nature. ,vol. 387, pp. 627- 630 ,(1997) , 10.1038/42517
Thomas Walz, Teruhisa Hirai, Kazuyoshi Murata, J. Bernard Heymann, Kaoru Mitsuoka, Yoshinori Fujiyoshi, Barbara L. Smith, Peter Agre, Andreas Engel, The three-dimensional structure of aquaporin-1 Nature. ,vol. 387, pp. 624- 627 ,(1997) , 10.1038/42512
E Jakobsson, Computer simulation studies of biological membranes: progress, promise and pitfalls Trends in Biochemical Sciences. ,vol. 22, pp. 339- 344 ,(1997) , 10.1016/S0968-0004(97)01096-7